Бесплатная библиотека стандартов и нормативов www.docload.ru

Все документы, размещенные на этом сайте, не являются их официальным изданием и предназначены исключительно для ознакомительных целей.
Электронные копии этих документов могут распространяться без всяких ограничений. Вы можете размещать информацию с этого сайта на любом другом сайте.
Это некоммерческий сайт и здесь не продаются документы. Вы можете скачать их абсолютно бесплатно!
Содержимое сайта не нарушает чьих-либо авторских прав! Человек имеет право на информацию!

 

Ассоциация «ЖЕЛЕЗОБЕТОН»

 

Центральный научно-исследовательский и проектно-экспериментальный институт промышленных зданий и сооружений (ЦНИИПРОМЗДАНИЙ)

Научно-исследовательский, проектно-конструкторский и технологический институт бетона и железобетона (НИИЖБ)

ПОСОБИЕ

 ПО ПРОЕКТИРОВАНИЮ БЕТОННЫХ

И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ

ИЗ ТЯЖЕЛОГО БЕТОНА БЕЗ

ПРЕДВАРИТЕЛЬНОГО НАПРЯЖЕНИЯ

АРМАТУРЫ
(к СП 52-101-2003)

Москва 2005

Содержание

ПРЕДИСЛОВИЕ

1. ОБЩИЕ РЕКОМЕНДАЦИИ

ОСНОВНЫЕ ПОЛОЖЕНИЯ

ОСНОВНЫЕ РАСЧЕТНЫЕ ТРЕБОВАНИЯ

2. МАТЕРИАЛЫ ДЛЯ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ

БЕТОН

ПОКАЗАТЕЛИ КАЧЕСТВА БЕТОНА И ИХ ПРИМЕНЕНИЕ ПРИ ПРОЕКТИРОВАНИИ

НОРМАТИВНЫЕ И РАСЧЕТНЫЕ ХАРАКТЕРИСТИКИ БЕТОНА

АРМАТУРА

ПОКАЗАТЕЛИ КАЧЕСТВА АРМАТУРЫ

НОРМАТИВНЫЕ И РАСЧЕТНЫЕ ХАРАКТЕРИСТИКИ АРМАТУРЫ

3. РАСЧЕТ ЭЛЕМЕНТОВ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ПО ПРЕДЕЛЬНЫМ СОСТОЯНИЯМ ПЕРВОЙ ГРУППЫ

РАСЧЕТ БЕТОННЫХ ЭЛЕМЕНТОВ ПО ПРОЧНОСТИ

ОБЩИЕ ПОЛОЖЕНИЯ

РАСЧЕТ ВНЕЦЕНТРЕННО СЖАТЫХ ЭЛЕМЕНТОВ

РАСЧЕТ ИЗГИБАЕМЫХ ЭЛЕМЕНТОВ

Примеры расчета

РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ ПО ПРОЧНОСТИ

ИЗГИБАЕМЫЕ ЭЛЕМЕНТЫ

РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ НА ДЕЙСТВИЕ ИЗГИБАЮЩИХ МОМЕНТОВ

Общие положения

Прямоугольные сечения

Тавровые и двутавровые сечения

Примеры расчета

Прямоугольные сечения

Тавровые и двутавровые сечения

Элементы, работающие на косой изгиб

Примеры расчета

РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ ПРИ ДЕЙСТВИИ ПОПЕРЕЧНЫХ СИЛ

Расчет железобетонных элементов по полосе между наклонными сечениями

Расчет железобетонных элементов по наклонным сечениям на действие поперечных сил

Элементы постоянной высоты, армированные хомутами, нормальными к оси элемента

Элементы переменной высоты с поперечным армированием

Элементы, армированные отгибами

Элементы без поперечной арматуры

Расчет железобетонных элементов по наклонным сечениям на действие моментов

Примеры расчета

ВНЕЦЕНТРЕННО СЖАТЫЕ ЭЛЕМЕНТЫ

ОБЩИЕ ПОЛОЖЕНИЯ

РАСЧЕТ ПРИ ДЕЙСТВИИ ПОПЕРЕЧНЫХ СИЛ

УЧЕТ ВЛИЯНИЯ ПРОГИБА ЭЛЕМЕНТОВ

РАСЧЕТ НОРМАЛЬНЫХ СЕЧЕНИЙ ПО ПРЕДЕЛЬНЫМ УСИЛИЯМ

Прямоугольные сечения с симметричной арматурой

Прямоугольные сечения с несимметричной арматурой

Двутавровые сечения с симметричной арматурой

Кольцевые сечения

Круглые сечения

Расчет элементов на косое внецентренное сжатие

Примеры расчета

Прямоугольные сечения с симметричной арматурой

Прямоугольные сечения с несимметричной арматурой

Двутавровые сечения

Кольцевые сечения

Круглые сечения

Элементы, работающие на косое внецентренное сжатие

Расчет наклонных сечений

ЦЕНТРАЛЬНО И ВНЕЦЕНТРЕННО РАСТЯНУТЫЕ ЭЛЕМЕНТЫ

ЦЕНТРАЛЬНО РАСТЯНУТЫЕ ЭЛЕМЕНТЫ

ВНЕЦЕНТРЕННО РАСТЯНУТЫЕ ЭЛЕМЕНТЫ

Примеры расчета

РАСЧЕТ НОРМАЛЬНЫХ СЕЧЕНИЙ НА ОСНОВЕ НЕЛИНЕЙНОЙ ДЕФОРМАЦИОННОЙ МОДЕЛИ

ЭЛЕМЕНТЫ, РАБОТАЮЩИЕ НА КРУЧЕНИЕ С ИЗГИБОМ

ЭЛЕМЕНТЫ ПРЯМОУГОЛЬНОГО СЕЧЕНИЯ

Расчет на совместное действие крутящего и изгибающего моментов

Расчет на совместное действие крутящего момента и поперечной силы

Примеры расчета

РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ НА МЕСТНОЕ ДЕЙСТВИЕ НАГРУЗОК

РАСЧЕТ НА МЕСТНОЕ СЖАТИЕ

Примеры расчета

РАСЧЕТ ЭЛЕМЕНТОВ НА ПРОДАВЛИВАНИЕ

Общие положения

Расчет на продавливание элементов без поперечной арматуры

Расчет на продавливание элементов с поперечной арматурой

Примеры расчета

4. РАСЧЕТ ЭЛЕМЕНТОВ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ПО ПРЕДЕЛЬНЫМ СОСТОЯНИЯМ ВТОРОЙ ГРУППЫ

РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ ПО РАСКРЫТИЮ ТРЕЩИН

ОБЩИЕ ПОЛОЖЕНИЯ

ОПРЕДЕЛЕНИЕ МОМЕНТА ОБРАЗОВАНИЯ ТРЕЩИН

ОПРЕДЕЛЕНИЕ ШИРИНЫ РАСКРЫТИЯ ТРЕЩИН, НОРМАЛЬНЫХ К ПРОДОЛЬНОЙ ОСИ ЭЛЕМЕНТА

Примеры расчета.

РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ПО ДЕФОРМАЦИЯМ

ОБЩИЕ ПОЛОЖЕНИЯ

РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ ПО ПРОГИБАМ

ОПРЕДЕЛЕНИЕ КРИВИЗНЫ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ

ОБЩИЕ ПОЛОЖЕНИЯ

КРИВИЗНА ЖЕЛЕЗОБЕТОННОГО ЭЛЕМЕНТА НА УЧАСТКЕ БЕЗ ТРЕЩИН В РАСТЯНУТОЙ ЗОНЕ

КРИВИЗНА ЖЕЛЕЗОБЕТОННОГО ЭЛЕМЕНТА НА УЧАСТКЕ С ТРЕЩИНАМИ В РАСТЯНУТОЙ ЗОНЕ

ОПРЕДЕЛЕНИЕ КРИВИЗНЫ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ НА ОСНОВЕ НЕЛИНЕЙНОЙ ДЕФОРМАЦИОННОЙ МОДЕЛИ

ОПРЕДЕЛЕНИЕ УГЛОВ СДВИГА ЖЕЛЕЗОБЕТОННОГО ЭЛЕМЕНТА

Примеры расчета

5. КОНСТРУКТИВНЫЕ ТРЕБОВАНИЯ

ОБЩИЕ ПОЛОЖЕНИЯ

ГЕОМЕТРИЧЕСКИЕ РАЗМЕРЫ КОНСТРУКЦИЙ

АРМИРОВАНИЕ

ЗАЩИТНЫЙ СЛОЙ БЕТОНА

МИНИМАЛЬНЫЕ РАССТОЯНИЯ МЕЖДУ СТЕРЖНЯМИ АРМАТУРЫ

ПРОДОЛЬНОЕ АРМИРОВАНИЕ

ПОПЕРЕЧНОЕ АРМИРОВАНИЕ

АНКЕРОВКА АРМАТУРЫ

СОЕДИНЕНИЯ АРМАТУРЫ

ГНУТЫЕ СТЕРЖНИ

ТРЕБОВАНИЯ К БЕТОННЫМ И ЖЕЛЕЗОБЕТОННЫМ КОНСТРУКЦИЯМ

ФИКСАЦИЯ АРМАТУРЫ

ПРИЛОЖЕНИЕ 1

СОРТАМЕНТ АРМАТУРЫ

ПРИЛОЖЕНИЕ 2

ОСНОВНЫЕ БУКВЕННЫЕ ОБОЗНАЧЕНИЯ

ПРЕДИСЛОВИЕ

Настоящее Пособие разработано в развитие Свода Правил СП 52-101-2003 «Бетонные и железобетонные конструкции без предварительного напряжения арматуры».

В Пособии приведены все указания по проектированию СП 52-101-2003, положения, детализирующие эти указания, примеры расчета элементов, а также рекомендации по проектированию.

Материалы по проектированию редко встречаемых конструкций с ненапрягаемой высокопрочной арматурой (классов А600 и выше) в настоящее Пособие не включены, а приведены в «Пособии по проектированию предварительно напряженных железобетонных конструкций из тяжелого бетона».

В Пособии не приведены особенности проектирования конструкций отдельных видов зданий и сооружений, связанные с определением усилий в этих конструкциях. Эти вопросы освещены в соответствующих Сводах Правил и пособиях.

Единицы физических величин, приведенные в Пособии: силы выражены в ньютонах (Н) или килоньютонах (кН); линейные размеры - в мм (для сечений) или в м (для элементов или их участков); напряжения, сопротивления, модули упругости - мегапаскалях (МПа); распределенные нагрузки и усилия - в кН/м или Н/мм. Поскольку 1 МПа = 1 Н/мм2, при использовании в примерах расчета формул, включающих величины в МПа (напряжения, сопротивления и т.п.), остальные величины приводятся только в Н и мм (мм2).

В таблицах нормативные и расчетные сопротивления и модули упругости материалов приведены в МПа и в кгс/см2.

Пособие разработано «ЦНИИПромзданий» (инженер И.К.Никитин, доктора технических наук Э.Н.Кодыш и Н.Н.Трёкин) при участии «НИИЖБ» (доктора технических наук А.С.Залесов, Е.А.Чистяков, А.И.Звездов, Т.А.Мухамедиев).

1. ОБЩИЕ РЕКОМЕНДАЦИИ

ОСНОВНЫЕ ПОЛОЖЕНИЯ

1.1. Рекомендации настоящего Пособия распространяются на проектирование бетонных и железобетонных конструкций зданий и сооружений, выполняемых из тяжелого бетона классов по прочности на сжатие от В10 до В60 без предварительного напряжения арматуры и эксплуатируемых при систематическом воздействии температур не выше 50°С и не ниже минус 40°С в среде с неагрессивной степенью воздействия при статическом действии нагрузки.

Рекомендации Пособия не распространяются на проектирование бетонных и железобетонных конструкций гидротехнических сооружений, мостов, тоннелей, труб под насыпями, покрытий автомобильных дорог и аэродромов и некоторых других специальных сооружений.

Примечание. Термин «тяжелый бетон» применен в соответствии с ГОСТ 25192.

1.2. При проектировании бетонных и железобетонных конструкций, кроме выполнения расчетных и конструктивных требований настоящего Пособия, должны выполняться технологические требования по изготовлению и возведению конструкций, а также должны быть обеспечены условия для надлежащей эксплуатации зданий и сооружений с учетом требований по экологии согласно соответствующим нормативным документам.

1.3. В сборных конструкциях особое внимание должно быть уделено на прочность и долговечность соединений.

1.4. Бетонные элементы применяют:

а) преимущественно в конструкциях, работающих на сжатие при расположении продольной силы в пределах поперечного сечения элемента;

б) в отдельных случаях в конструкциях, работающих на сжатие при расположении продольной силы за пределами поперечного сечения элемента, а также в изгибаемых конструкциях, когда их разрушение не представляет непосредственной опасности для жизни людей и сохранности оборудования (например, элементы лежащие на сплошном основании).

Конструкции рассматривают как бетонные, если их прочность в стадии эксплуатации обеспечена одним бетоном.

1.5. Расчетная зимняя температура наружного воздуха принимается как средняя температура воздуха наиболее холодной пятидневки в зависимости от района строительства согласно СНиП 23-01-99. Расчетные технологические температуры устанавливаются заданием на проектирование.

ОСНОВНЫЕ РАСЧЕТНЫЕ ТРЕБОВАНИЯ

1.6. Расчеты бетонных и железобетонных конструкций следует производить по предельным состояниям, включающим:

- предельные состояния первой группы (по полной непригодности к эксплуатации вследствие потери несущей способности);

- предельные состояния второй группы (по непригодности к нормальной эксплуатации вследствие образования или чрезмерного раскрытия трещин, появления недопустимых деформаций и др.).

Расчеты по предельным состояниям первой группы, содержащиеся в настоящем Пособии, включают расчеты по прочности с учетом в необходимых случаях деформированного состояния конструкции перед разрушением.

Расчеты по предельным состояниям второй группы, содержащиеся в настоящем Пособии, включают расчеты по раскрытию трещин и по деформациям.

Расчет бетонных конструкций по предельным состояниям второй группы не производится.

Расчет по предельным состояниям конструкции в целом, а также отдельных ее элементов следует, как правило, производить для всех стадий - изготовления, транспортирования, возведения и эксплуатации, при этом расчетные схемы должны отвечать принятым конструктивным решениям.

1.7. Определение усилий и деформаций от различных воздействий в конструкциях и в образуемых ими системах зданий и сооружений следует производить с учетом возможного образования трещин и неупругих деформаций в бетоне и арматуре (физическая нелинейность), а также с учетом в необходимых случаях деформированного состояния конструкций перед разрушением (геометрическая нелинейность).

Для статически неопределимых конструкций, методика расчета которых с учетом физической нелинейности не разработана, допускается определять усилия в предположении линейной упругости материала.

1.8. Нормативные значения нагрузок и воздействий, коэффициенты сочетаний, коэффициенты надежности по нагрузке, коэффициенты надежности по назначению, а также подразделение нагрузок на постоянные и временные (длительные и кратковременные) принимают согласно СНиП 2.01.07-85*.

1.9. При расчете элементов сборных конструкций на воздействие усилий, возникающих при их подъеме, транспортировании и монтаже, нагрузку от веса элемента следует принимать с коэффициентом динамичности, равным: 1,60 - при транспортировании, 1,40 - при подъеме и монтаже. В этом случае следует учитывать также коэффициенты надежности по нагрузке.

Допускается принимать более низкие, обоснованные в установленном порядке, значения коэффициентов динамичности, но не ниже 1,25.

2. МАТЕРИАЛЫ ДЛЯ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ

БЕТОН

ПОКАЗАТЕЛИ КАЧЕСТВА БЕТОНА И ИХ ПРИМЕНЕНИЕ ПРИ ПРОЕКТИРОВАНИИ

2.1. Для бетонных и железобетонных конструкций следует предусматривать бетоны следующих классов и марок:

а) классов по прочности на сжатие:

В10; В15; В20; В25; В30; В35; В40; В45; В50; В55; В60;

б) классов по прочности на осевое растяжение:

Вt0,8; Вt1,2; Вt1,6; Вt2,0; Вt2,4; Вt2,8; Вt3,2;

в) марок по морозостойкости:

F50; F75; F100, F150; F200; F300; F400; F500;

г) марок по водонепроницаемости:

W2; W4; W6; W8; W10; W12.

2.2. Возраст бетона, отвечающий его классу по прочности на сжатие и на осевое растяжение (проектный возраст), назначают при проектировании, исходя из возможных реальных сроков загружения конструкции проектными нагрузками. При отсутствии этих данных класс бетона устанавливают в возрасте 28 суток.

Значение отпускной прочности бетона в элементах сборных конструкций следует назначать в соответствии с ГОСТ 13015.0 и стандартами на конструкции конкретных видов.

2.3. Класс бетона по прочности на сжатие назначается во всех случаях.

Класс бетона по прочности на осевое растяжение назначается в случаях, когда эта характеристика имеет главенствующее значение, и ее контролируют на производстве (например, для бетонных изгибаемых элементов).

Марку по морозостойкости назначают для конструкций, подверженных в процессе эксплуатации попеременному замораживанию и оттаиванию (надземные конструкции, подвергающиеся атмосферным воздействиям, находящиеся во влажном грунте или под водой и др.).

Марку по водонепроницаемости назначают для конструкций, к которым предъявляют требования ограничения водопроницаемости (резервуары, подпорные стены и др.).

2.4. Для железобетонных конструкций рекомендуется принимать класс бетона на сжатие не ниже В15; при этом для сильно нагруженных сжатых стержневых элементов рекомендуется принимать класс бетона не ниже В25.

Для бетонных сжатых элементов не рекомендуется применять бетон класса выше В30.

2.5. Для надземных конструкций, повергаемых атмосферным воздействиям окружающей среды при расчетной зимней температуре наружного воздуха от минус 5°С до минус 40°С, принимают марку бетона по морозостойкости не ниже F75; при этом, если такие конструкции защищены от непосредственного воздействия атмосферных осадков, марку по морозостойкости можно применять не ниже F50.

При расчетной зимней температуре выше минус 5°С в указанных выше конструкциях марку бетона по морозостойкости не нормируют.

Примечание. Расчетная зимняя температура наружного воздуха принимается согласно п.1.5.

НОРМАТИВНЫЕ И РАСЧЕТНЫЕ ХАРАКТЕРИСТИКИ БЕТОНА

2.6. Нормативные значения сопротивления бетона осевому сжатию (призменная прочность) Rb,n и осевому растяжению (при назначении класса по прочности на сжатие) Rbt,n принимают в зависимости от класса бетона В согласно табл. 2.1.

Таблица 2.1.

Вид сопротивления

Нормативные сопротивления бетона Rb,n и Rbt,n и расчетные значения сопротивления бетона для предельных состояний второй группы Rb,ser и Rbt,ser МПа (кгс/см2) при классе бетона по прочности на сжатие

В10

В15

Б20

В25

В30

В35

В40

В45

В50

В55

В60

Сжатие осевое Rb,n, Rb,ser

7,5 (76,5)

11,0 (112)

15,0 (153)

18,5 (188)

22,0 (224)

25,5 (260)

29,0 (296)

32,0 (326)

36,0 (367)

39,5 (403)

43,0 (438)

Растяжение Rbt,n  Rbt,ser

0,85 (8,7)

1,10 (11,2)

1,35 (13,8)

1,55 (15,8)

1,75 (17,8)

1,95 (19,9)

2,10 (21,4)

2,25 (22,9)

2,45 (25,0)

2,60 (26,5)

2,75 (28,0)

При назначении класса бетона по прочности на осевое растяжение Вt нормативные сопротивления бетона осевому растяжению Rbt,n в МПа принимают равными числовой характеристике класса бетона на осевое растяжение.

2.7. Расчетные сопротивления бетона осевому сжатию Rb и осевому растяжению Rbt для предельных состояний первой группы определяют по формулам:

                                                                              (2.1)

где γь - коэффициент надежности по бетону при сжатии, принимаемый равным 1,3;

γbt -коэффициент надежности по бетону при растяжении, принимаемый равным:

1,5 - при назначении класса бетона по прочности на сжатие;

1,3 - при назначении класса бетона по прочности на растяжение.

Расчетные сопротивления бетона Rb и Rbt (с округлением) в зависимости от класса бетона по прочности на сжатие и осевое растяжение приведены соответственно в табл. 2.2 и 2.3

Расчетные значения сопротивления бетона осевому сжатию Rb.ser и осевому растяжению Rbt,ser для предельных состояний второй группы принимают равными соответствующим нормативным сопротивлениям, т.е. вводят в расчет с коэффициентом надежности по бетону γь = γbt = 1,0. Значения Rb.ser и Rbt,ser приведены в табл. 2.1.

Таблица 2.2

Вид сопротивления

Расчетные сопротивления бетона для предельных состояний первой группы Rb и Rbt, МПа (кгс/см2) при классе бетона по прочности на сжатие

В10

В15

В20

В25

В30

В35

В40

В45

В50

В55

В60

Сжатие осевое, Rb

6,0 (61,2)

8,5 (86,6)

11,5 (117)

14,5 (148)

17,0 (173)

19,5 (199)

22,0 (224)

25,0 (255)

27,5 (280)

30,0 (306)

33,0 (33б)

Растяжение осевое, Rbt

0,56 (5,7)

0,75 (7,6)

0,90 (9,2)

1,05 (10,7)

1,15 (11,7)

1,30 (13,3)

1,40 (14,3)

1,50 (15,3)

1,60 (16,3)

1,70 (17,3)

1,80 (18,3)

Таблица 2.3

Расчетные сопротивления бетона на осевое растяжения для предельных состояний первой группы Rbt, МПа (кгс/см2) при классе бетона по прочности на осевое растяжение

Вt0,8

Вt1,2

Вt1,6

Вt2,0

Вt2,4

Вt2,8

Вt3,2

0,62 (6,3)

0,93 (9,5)

1,25 (12,7)

1,55 (15,8)

1,85 (18,9)

2,15 (21,9)

2,45 (25,0)

2.8. В необходимых случаях расчетные сопротивления бетона умножаются на следующие коэффициенты условий работы γbi :

а) γb1 = 0,9 - для бетонных и железобетонных конструкций при действии только постоянных и длительных нагрузок, вводимый к расчетным значениям Rb и Rbt;

б) γb2 = 0,9 - для бетонных конструкций, вводимый к расчетному значению Rb;

в) γb3 = 0,9 - для бетонных и железобетонных конструкций, бетонируемых в вертикальном, вводимый к расчетному значению Rb.

2.9. Значение начального модуля упругости бетона при сжатии и растяжении Eb принимают в зависимости от класса бетона по прочности на сжатие В согласно табл. 2.4

2.10. Значения коэффициента поперечной деформации бетона (коэффициента Пуассона) допускается принимать vb,P = 0,2.

Модуль сдвига бетона G принимают равным 0,4 соответствующего значения Eb, указанного в табл. 2.4.

2.11. Значения коэффициента линейной температурной деформации бетона при изменении температуры от минус 40 до плюс 50°С принимают αbt = 1·10-5 °С-1.

Таблица 2.4

Значения начального модуля упругости бетона при сжатии и растяжении Eb·10-3, МПа (кгс/см2), при классе бетона по прочности на сжатие

В10

В15

В20

В25

В30

В35

В40

В45

В50

В55

В60

19,0 (194)

24,0 (245)

27,5 (280)

30,0 (306)

32,5 (331)

34,5 (352)

36,0 (367)

37,0 (377)

38,0 (387)

39,0 (398)

39,5 (403)

2.12. Для определения массы железобетонной или бетонной конструкции плотность бетона принимается равной 2400 кг/м3.

Плотность железобетона при содержании арматуры 3% и менее может приниматься равной 2500 кг/м3; при содержании арматуры свыше 3% плотность определяется как сумма масс бетона и арматуры на единицу объема железобетонной конструкции. При этом масса 1 м длины арматурной стали принимается по приложению 1, а масса листовой и фасонной стали - по государственным стандартам.

При определении нагрузки от собственного веса конструкции удельный вес ее в кН/м3 допускается принимать равным 0,01 плотности в кг/м3.

2.13. Значения относительных деформаций бетона, характеризующих диаграмму состояния сжатого бетона (εbo, εb1,red , εb2) и растянутого бетона (εbto, εbt1,red , εbt2), а также значения коэффициента ползучести бетона φb,cr приведены в пп. 4.27 и 4.23.

АРМАТУРА

ПОКАЗАТЕЛИ КАЧЕСТВА АРМАТУРЫ

2.14. Для железобетонных конструкций, проектируемых в соответствии с требованиями настоящего Пособия следует предусматривать арматуру:

- горячекатаную гладкую арматуру класса А240 (A-I);

- горячекатаную и термомеханически упрочненную периодического профиля классов А300 (А-II), А400 (А-III, А400С), А500 (А500С);

- холоднодеформированную периодического профиля класса В500 (Bp-I, B500C).

В качестве арматуры железобетонных конструкций, устанавливаемой по расчету, рекомендуется преимущественно применять:

- арматуру периодического профиля классов А500 и А400;

- арматуру периодического профиля класса В500 в сварных каркасах и сетках.

Сортамент арматуры приведен в приложении 1.

2.15. В конструкциях, эксплуатируемых на открытом воздухе или в неотапливаемых зданиях в районах с расчетной зимней температурой ниже минус 30°С, не допускается применение арматуры класса А300 марки стали Ст5пс диаметром 18 - 40 мм, а также класса А240 марки стали Ст3кп.

Эти виды арматуры можно применять в конструкциях отапливаемых зданий, расположенных в указанных районах, если в стадии возведения несущая способность конструкций будет обеспечена исходя из расчетного сопротивления арматуры с понижающим коэффициентом 0,7 и расчетной нагрузки с коэффициентом надежности по нагрузке γf = 1,0.

Прочие виды и классы арматуры можно применять без ограничений.

2.16. Для монтажных (подъемных) петель элементов сборных железобетонных и бетонных конструкций следует применять горячекатаную арматуру класса А240 марок стали Ст3сп и Ст3пс, а также класса A300 марки стали 10ГТ.

НОРМАТИВНЫЕ И РАСЧЕТНЫЕ ХАРАКТЕРИСТИКИ АРМАТУРЫ

2.17. Основной прочностной характеристикой арматуры является нормативное значение сопротивления растяжению Rs,n принимаемое в зависимости от класса арматуры по табл. 2.5

2.18. Расчетные значения сопротивления арматуры растяжению Rs для предельных состояний первой группы определяют по формуле

,                                                                                                 (2.2)

где γs - коэффициент надежности по арматуре, принимаемый равным:

1.1 - для арматуры классов А240, А300 и А400;

1,15 - для арматуры класса А500;

1.2 - для арматуры класса В500.

Расчетные значения Rs приведены (с округлением) в табл. 2.6. При этом значения Rs,n приняты равными наименьшим контролируемым значениям по соответствующим ГОСТ.

Расчетные значения сопротивления арматуры растяжению Rs,ser для предельных состоянии второй группы принимают равными соответствующим нормативным сопротивлениям Rs,n (см. табл. 2.5),

Таблица 2.5

Арматура классов

Номинальный диаметр арматуры, мм

Нормативные значения сопротивления растяжению Rs,n и расчетные значения сопротивления растяжению для предельных состояний второй группы Rs,ser МПа (кгс/см )

А240

6-40

240 (2450)

А300

10-70

300 (3060)

А400

6-40

400 (4080)

А500

6-40

500 (5100)

В500

3-12

500 (5100)

Расчетные значения сопротивления арматуры сжатию Rsc принимают равными расчетным значениям сопротивления арматуры растяжению Rs за исключением арматуры класса А500, для которой Rsc = 400 МПа и арматуры класса В500 для которой Rsc = 360 МПа (см. табл. 2.6). При расчете конструкций на действие постоянных и длительных нагрузок значения Rsc для арматуры классов А500 и В500 допускается принимать равными Rs.

Таблица 2.6.

Арматура классов

Расчетные значения сопротивления арматуры для предельных состояний первой группы, МПа (кгс/см2)

растяжению

сжатию, Rsc

продольной, Rs

поперечной (хомутов и отогнутых стержней), Rsw

А240

215 (2190)

170 (1730)

215 (2190)

А300

270 (2750)

215 (2190)

270 (2750)

А400

355 (3620)

285 (2900)

355 (3620)

А500

435 (4430)

300 (3060)

400 (4080)

В500

415 (4230)

300 (3060)

360 (3670)

2.19. Расчетные значения сопротивления поперечной арматуры (хомутов и отогнутых стержней) Rsw снижают по сравнению с Rs путем умножения на коэффициент условий работы γs1 = 0,8, но принимают не более 300 МПа. Расчетные значения Rsw приведены (с округлением) в табл. 2.6.

2.20. Значения модуля упругости арматуры Es принимают одинаковыми при растяжении и сжатии и равными Es = 2,0·105 МПа = 2,0·106 кгс/см2.

3. РАСЧЕТ ЭЛЕМЕНТОВ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ПО ПРЕДЕЛЬНЫМ СОСТОЯНИЯМ ПЕРВОЙ ГРУППЫ

РАСЧЕТ БЕТОННЫХ ЭЛЕМЕНТОВ ПО ПРОЧНОСТИ

ОБЩИЕ ПОЛОЖЕНИЯ

3.1. Бетонные элементы рассчитываются по прочности на действие продольных сжимающих сил, изгибающих моментов и поперечных сил, а также на местное сжатие

3.2. Бетонные элементы в зависимости от условий их работы и требований, предъявляемых к ним, рассчитывают без учета или с учетом сопротивления бетона растянутой зоны.

Без учета сопротивления бетона растянутой зоны производят расчет внецентренно сжатых элементов, указанных в п.1.4,а, принимая, что достижение предельного состояния характеризуется разрушением сжатого бетона.

С учетом сопротивления бетона растянутой зоны производят расчет элементов, указанных в п.1.4,б, а также элементов, в которых не допускают трещины по условиям эксплуатации конструкций (элементов, подвергающихся давлению воды, карнизов, парапетов и др.). При этом принимают, что предельное состояние характеризуется достижением предельных усилий в бетоне растянутой зоны.

3.3. Если усилия (момент, поперечная сила или продольная сила) F1 от постоянных и длительных нагрузок превышает 0,9 усилия от всех нагрузок, включая кратковременные, следует проводить расчет на действие усилий F1, принимая расчетные сопротивления бетона Rb и Rbt с учетом коэффициента γb1 = 0,9.

3.4. Расчет по прочности бетонных элементов на действие местного сжатия производят согласно указаниям пп.3.81 и 3.82.

3.5. В бетонных элементах в случаях, указанных в п.5.12, необходимо предусмотреть конструктивную арматуру.

РАСЧЕТ ВНЕЦЕНТРЕННО СЖАТЫХ ЭЛЕМЕНТОВ

3.6. При расчете внецентренно сжатых бетонных элементов следует учитывать случайный эксцентриситет еа, принимаемых не менее:

1/600 длины элемента или расстояния между его сечениями, закрепленными от смещения;

1/30 высоты сечения;

10 мм.

Для элементов статически неопределимых конструкций (например, защемленных по концам столбов) значение эксцентриситета продольной силы относительно центра тяжести сечения ео принимают равным значению эксцентриситета, полученному из статического расчета, но не менее еа.

Для элементов статически определимых конструкций эксцентриситет ео принимают равным сумме эксцентриситетов - из статического расчета конструкций и случайного.

3.7. При гибкости элементов lo/i > 14 (для прямоугольного сечения при lo/h > 4) необходимо учитывать влияние на их несущую способность прогибов путем умножения значений ео на коэффициент η, определяемый согласно п.3.10.

3.8. Расчет внецентренно сжатых бетонных элементов при расположении продольной силы в пределах сечения элемента производится без учета сопротивления бетона растянутой зоны следующим образом.

Для элементов прямоугольного, таврового и двутаврового сечения при действии усилия в плоскости симметрии расчет производится из условия

N £ RbAb,                                                                                                  (3.1)

где Аь - площадь сжатой зоны бетона, определяемая из условия, что ее центр тяжести совпадает с точкой приложения продольной силы N (с учетом прогиба) (черт. 3.1.).

Для элементов прямоугольного сечения

                                                                                  (3.2)

где η - см. п.3.10.

Из условия (3.1) также можно рассчитывать симметричные трапециевидные и треугольные сечения, если наибольшее сжатие приходится на большую сторону сечения.

Черт.3.1. Схема усилий и эпюра напряжений в сечении, нормальном к продольной оси внецентренно сжатого бетонного элемента, рассчитываемого по прочности без учета сопротивления бетона растянутой зоны

1-центр тяжести площади сжатой зоны Аь, 2-то же, площади всего сечения

В остальных случаях расчет производится на основе нелинейной деформационной модели согласно пп.3.72 - 3.76, принимая в расчетных зависимостях площадь арматуры равной нулю.

Допускается при косом внецентренном сжатии прямоугольного сечения расчет проводить из условия (3.1), определяя Аь по формуле

                                                          (3.3)

где е0x и в - эксцентриситеты силы N в направлении соответственно размера сечения h и b.

ηх и ηу -коэффициенты η определенные согласно п.3.10 отдельно для каждого направления.

3.9. Внецентренно сжатые бетонные элементы при расположении продольной силы за пределами поперечного сечения элемента, а также элементы, в которых появление трещин не допускается, независимо от расчета из условия (3.1), должны быть проверены с учетом сопротивления бетона растянутой зоны из условия

,                                                                                      (3.4)

где yt - расстояние от центра тяжести сечения элемента до наиболее растянутого волокна;

η - см. п.3.10.

Для элементов прямоугольного сечения условие (3.4) имеет вид

                                                                                            (3.5)

Допускается расчет бетонных элементов с учетом бетона растянутой зоны производить на основе нелинейной деформационной модели согласно пп.3.72 - 3.76, принимая в расчетных зависимостях площадь арматуры равной нулю.

3.10. Значение коэффициента η, учитывающего влияние прогиба на значение эксцентриситета продольной силы еo, определяется по формуле

                                                                                              (3.6)

где Ncr - условная критическая сила, определяемая по формуле

                                                                                               (3.7)

где D - жесткость элемента в предельной по прочности стадии, определяемая по формуле

                                                                                (3.8)

lо = определяется по табл.3.1.

Таблица 3.1.

Характер опирания стен и столбов

Расчетная длина lо внецентренно сжатых бетонных элементов

1. С опорами вверху и внизу:

 

а) при шарнирах на двух концах независимо от величины смещения опор

H

б) при защемлении одного из концов и возможном смещении опор зданий:

 

многопролетных

1,2 H

однопролетных

1,5 H

в) при частичном защемлении неподвижных опор

0,8 H

2. Свободно стоящие

2 H

Примечание. H - расстояние между перекрытиями и другими горизонтальными опорами (при перекрытиях, монолитно связанных со стеной (столбом) за вычетом толщины перекрытия) или высота свободно стоящей конструкции.

Для элементов прямоугольного сечения формула (3.8) имеет вид

                                                                                   (3.8a)

В формулах (3.8) и (3.8а):

jl - коэффициент, учитывающий влияние длительного действия нагрузки на прогиб элемента в предельном состоянии, равный

                                                                                             (3.9)

но не более 2;

М1 - момент относительно растянутой или наименее сжатой грани сечения от действия постоянных, длительных и кратковременных нагрузок;

М1l - то же, от постоянных и длительных нагрузок;

dе- коэффициент, принимаемый равным eo/h, но не менее 0,15.

Для стен и столбов с упруго неподвижными опорами указанное значение η, принимается при расчете сечений в средней трети высоты Н. При расчете опорных сечений, принимается η = 1,0, а в других сечениях - по линейной интерполяции.

Если нижняя опора жестко защемлена, то при упругой верхней опоре определенное по формуле (3.6) значение η принимается для сечений нижнего участка высотой 2/3H.

3.11. Расчет с учетом прогиба внецентренно сжатых бетонных элементов прямоугольного сечения класса не выше В20 при lо £ 20h допускается производить из условия

N £ αnRbh,                                                                                                 (3.10)

где αn - определяется по графику (черт. 3.2) в зависимости от значений eo/h и λ = lо h.

3.12. При действии значительных поперечных сил должно выполняться условие

                                                                                        (3.11)

где σmt и σтс - главные растягивающие и главные сжимающие напряжения, определяемые по формуле

                                                                     (3.12)

σх и τ - нормальное и касательное напряжение в рассматриваемом волокне сечения, определяемые как для упругого материала.

Черт.3.2. График несущей способности внецентренно сжатых бетонных элементов

Для прямоугольного сечения проверка условия (3.11) проводится для волокна на уровне центра тяжести сечения, а для тавровых и двутавровых сечений на уровне примыкания сжатых полок к стенке сечения.

РАСЧЕТ ИЗГИБАЕМЫХ ЭЛЕМЕНТОВ

3.13. Расчет изгибаемых бетонных элементов следует производить из условия

M £ RbtW,                                                                                                  (3.13)

где W - момент сопротивления для крайнего растянутого волокна; для прямоугольного сечения  .

Кроме того, для элементов таврового и двутаврового сечений должно выполняться условие

τRbt                                                                                                        (3.14)

где τ - касательные напряжения, определяемые как для упругого материала на уровне центра тяжести сечения.

Примеры расчета

Пример 1. Дано: межквартирная бетонная панель толщиной h =150 мм высотой H = 2,7 м, изготовленная вертикально (в кассете); бетон класса В15 (Еb= 24000 МПа, Rb = 8,5 МПа); полная нагрузка на 1 м стены N = 700 кН, в том числе постоянная и длительная нагрузка Nl = 650 кН.

Требуется проверить прочность панели.

Расчет, производим согласно п.3.8. на действие продольной силы, приложенной со случайным эксцентриситетом еа, определенным согласно п.3.6.

Поскольку

принимаем еа= еo = 10 мм. Закрепление панели сверху и снизу принимаем шарнирным, следовательно, расчетная длина lо, согласно табл.3.1, равна lо = Н= 2,7 м. Так как отношение lо/ h = 2,7/0,15 = 18 > 4, расчет производим с учетом влияния прогиба согласно п.3.10.

По формуле (3.9) определяем коэффициент φl, принимая M1l/М1 = Nl/N =650/700 = 0,93,

φl = 1 + M1l/М1 = 1+ 0,93 = 1,93.

Поскольку eo/h = 10/150 = 0,067 < 0,15, принимаем δе = 0,15.

Жесткость D определим по формуле (3.8а), принимая ширину сечения b = 1 м = 1000 мм

Тогда

Расчетное сопротивление бетона Rb согласно п. 2.8 принимаем с учетом коэффициентов γb2 = 0,9 и γb3 = 0,9, а учитывая наличие кратковременных нагрузок, принимаем γb1 = 1,0. Тогда Rb = 8,5·0,9·0,9 = 6,89 МПа.

Проверим условие (3.1), используя формулу (3.2)

RbAb = Rbbh(1 – 2·e0·η/h) = 6,89·1000·150(1 - 2·0,067·4,797) = 784635 Н = 784,6кН > N=700 кН, т.е. прочность панели на действие полной нагрузки обеспечена.

Поскольку Nl/N = 0,93 > 0,9, согласно п.3.3 проверим прочность панели на действии только постоянных и длительных нагрузок, т.е. при N = 650 кН. В этом случае φl = 2, и тогда

Расчетное сопротивление Rb принимаем с учетом γb1 = 0,9: Rb = 6,89·0,9 = 6,2 Н.

RbAb = 6,2·1000·150(1-2·10·1,745/150) = 713620Н = 713,6 кН > N = 650 кН,

т.е. прочность панели обеспечена при любых сочетаниях нагрузок.

РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ ПО ПРОЧНОСТИ

3.14. Железобетонные элементы рассчитывают по прочности на действие изгибающих моментов, поперечных сил, продольных сил, крутящих моментом и на местное действие нагрузки (местное сжатие, продавливание, отрыв).

ИЗГИБАЕМЫЕ ЭЛЕМЕНТЫ

РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ НА ДЕЙСТВИЕ ИЗГИБАЮЩИХ МОМЕНТОВ

Общие положения

3.15. Расчет по прочности железобетонных элементов на действие изгибающих моментов следует производить для сечений, нормальных к их продольной оси.

Расчет нормальных сечений изгибаемых элементов следует производить на основе нелинейной деформационной модели согласно пп.3.72 - 3.76, принимая N = 0.

Расчет прямоугольного, таврового и двутаврового сечений с арматурой, расположенной у перпендикулярных плоскости изгиба граней элемента, при действии момента в плоскости симметрии сечения допускается производить по предельным усилиям согласно пп.3.17-3.27.

Расчет элементов с такими сечениями на действие косого изгиба в некоторых случаях также допускается производить по предельным усилиям согласно пп.3.28 и 3.29.

3.16. Для железобетонных элементов, у которых предельный по прочности изгибающий момент оказывается меньше момента образования трещин (пп.4.5-4.8), площадь сечения продольной растянутой арматуры должна быть увеличена по сравнению с требуемой из расчета по прочности не менее чем на 15% или должна удовлетворять расчету по прочности на действие момента образования трещин.

3.17. Расчет по прочности нормальных сечений следует производить в зависимости от соотношения между значением относительной высоты сжатой зоны бетона , определяемым из соответствующих условий равновесия, и значением граничной относительной высоты сжатой зоны ξR при котором предельное состояние элемента наступает одновременно с достижением в растянутой арматуре напряжения, равного расчетному сопротивлению Rs.

Значение ξR определяют по формуле

                                                                                            (3.15)

где Rs - в МПа или по табл. 3.2.

Таблица 3.2

Класс арматуры

А240

А300

А400

А500

В500

Значение ξR

0,612

0,577

0,531

0,493

0,502

Значение aR

0,425

0,411

0,390

0,372

0,376

Прямоугольные сечения

3.18. Расчет прямоугольных сечений (черт.3.3) производится следующим образом в зависимости от высоты сжатой зоны

                                                                                     (3.16)

а) при  - из условия

                                                      (3.17)

б) при  - из условия

                                                                (3.18)

где  или см. табл. 3.2.

Правую часть условия (3.18) при необходимости можно несколько увеличить путем замены значения aR на (0,7 aR + 0,3 am), где am = ξ(1 - 0,5 ξ), и принимая здесь ξ не более 1.

Если х ≤ 0, прочность проверяют из условия

M RsAs (h0-a')                                                                                        (3.19)

Черт.3.3. Схема усилий и эпюра напряжений в поперечном прямоугольном сечении изгибаемого железобетонного элемента

Если вычисленная без учета сжатой арматуры (As= 0,0) высота сжатой зоны х меньше 2а', проверяется условие (3.19), где вместо а' подставляется х/2.

3.19. Изгибаемые элементы рекомендуется проектировать так, чтобы обеспечить выполнение условия . Невыполнение этого условия можно допустить лишь в случаях, когда площадь сечения растянутой арматуры определена из расчета по предельным состояниям второй группы или принята по конструктивным соображениям.

3.20. Проверку прочности прямоугольных сечений с одиночной арматурой производят:

при х < ξRho из условия

M RsAs (h0-0, 5x)                                                                                   (3.20)

где х - высота сжатой зоны, равная ; ξR - см. п.3.17;

при х ≥ ξRho из условия

                                                                                            (3.21)

где aR - см. табл. 3.2;

при этом несущую способность можно несколько увеличить, используя рекомендацию п.3.18, б.

3.21. Подбор продольной арматуры производят следующим образом.

Вычисляют значение

.                                                                                            (3.22)

Если aт < ar (см. табл. 3.2), сжатая арматура по расчету не требуется.

При отсутствии сжатой арматуры площадь сечения растянутой арматуры определяется по формуле

,                                                                  (3.23)

Если aт > ar , требуется увеличить сечение или повысить класс бетона, или установить сжатую арматуру согласно п.3.22.

3.22. Площади сечения растянутой As и сжатой A's арматуры, соответствующие минимуму их суммы, если по расчету требуется сжатая арматура (см. п.3.21), определяют по формулам:

                                                                                  (3.24)

                                                                            (3.25)

где ξR и ar см. табл. 3.2

Если значение принятой площади сечения сжатой арматуры As значительно превышает значение, вычисленное по формуле (3.24), площадь сечения растянутой арматуры можно несколько уменьшить по сравнению с вычисленной по формуле (3.25), используя формулу

                                                           (3.26)

 

где

При этом должно выполняться условие aт < ar (см. табл. 3.2).

Тавровые и двутавровые сечения

3.23. Расчет сечений, имеющих полку в сжатой зоне (тавровых, двутавровых и т.п.), производят в зависимости от положения границы сжатой зоны:

а) если граница проходит в полке (черт. 3.4,а), т.е. соблюдается условие

                                                                           (3.27)

расчет производят по пп.3.18 и 3.20 как для прямоугольного сечения шириной ;

б) если граница проходит в ребре (черт. 3.4,б), т.е. условие (3.27) не соблюдается, расчет производят из условия:

Черт.3.4. Положение границы сжатой зоны в тавровом сечении изгибаемого железобетонного элемента

а-в палке; б - в ребре

,                     (3.28)

 где А0v - площадь сечения свесов полки, равная (b'f -b)h'f, при этом высоту сжатой зоны определяют по формуле

                                                                       (3 29)

и принимают не более ξRho (см. табл. 3.2).

Если х> ξRho условие (3.28) можно записать в виде

,                               (3.30)

где aR - см. табл. 3.2.

Примечания: 1. При переменной высоте свесов полки допускается принимать значение h'f равным средней высоте свесов.

2. Ширина сжатой полки b'f, вводимая в расчет, не должна превышать величин, указанных в п. 3.26.

3.24. Требуемую площадь сечения сжатой арматуры определяют по формуле

                                                 (3.31)

где aR - см. табл. 3.2; А0v = (b'f -b)h'f

При этом должно выполняться условие h'f  ξRho В случае, если h'f > ξRho, площадь сечения сжатой арматуры определяют как для прямоугольного сечения шириной b = b'f по формуле (3.24).

3.25. Требуемую площадь сечения растянутой арматуры определяют следующим образом:

а) если граница сжатой зоны проходит в полке, т.е. соблюдается условие:

                                                (3.32)

площадь сечения растянутой арматуры определяют как для прямоугольного сечения шириной b'f согласно п.3.21 и п.3.22;

б) если граница сжатой зоны проходит в ребре, т.е. условие (3.32) не соблюдается, площадь сечения растянутой арматуры определяют по формуле

                                               (3.33)

где .                                 (3.34)

При этом должно выполняться условие aтar  (см. табл. 3.2).

3.26. Значение b'f вводимое в расчет, принимают из условия, что ширина свеса полки в каждую сторону от ребра должна быть не более 1/6 пролета элемента и не более:

а) при наличии поперечных ребер или при h'f ≥ 0,1h - 1/2 расстояния в свету между продольными ребрами;

б) при отсутствии поперечных ребер (или при расстояниях между ними, больших, чем расстояния между продольными ребрами) и при h'f  < 0,1h - 6h'f ;

в) при консольных свесах полки

при h'f  ≥ 0,1h - 6h'f ,

при 0,05hh'f  < 0,1h - 3h'f;

при h'f  < 0,05h - свесы не учитывают.

Примеры расчета
Прямоугольные сечения

Пример 2. Дано: сечение размером b = 300 мм, h = 600 мм; а = 40 мм; изгибающий момент с учетом кратковременных нагрузок М  = 200 кНм; бетон класса В15 (Rb = 8,5 МПа); арматура класса А300 (Rs = 270 МПа).

Требуется определить площадь сечения продольной арматуры.

Расчет.. ho = 600 - 40 = 560 мм. Подбор продольной арматуры производим согласно п.3.21. По формуле (3.22) вычисляем значение am

По табл. 3.2. находим ar = 0,41. Так как am = 0,25 < ar, сжатая арматура по расчету не требуется.

Требуемую площадь сечения растянутой арматуры определяем по формуле (3.23)

Принимаем 2Æ28 + 1Æ25 (As = 1598 мм2).

Пример 3. Дано: сечение размерами b = 300 мм, h = 800 мм; а = 70 мм; растянутая арматура А400 (Rs = 355 МПа); площадь ее сечения As = 2945 мм2 (6Æ25); бетон класса В25 (Rb = 14,5 МПа); изгибающий момент М = 550 кНм.

Требуется проверить прочность сечения.

Расчет.. ho = 800 - 70 = 730. Проверку прочности производим согласно п.3.20:

Определим значение х:

По табл. 3.2 находим ξR = 0,531. Так как ,

проверяем условие (3.20):

RsAs (ho-0, 5x) = 355·2945· (730 - 0,5·240) = 636,8·106 Н мм = 636,8 кНм >M = 550кНм,

т.е. прочность сечения обеспечена.

Пример 4. Дано: сечение размерами b= 300 мм, h = 800 мм; а = 50 мм; арматура класса А400 (Rs = Rsc = 355 МПа); изгибающий момент М = 780 кНм; бетон класса В15 (Rb = 8,5 МПа).

Требуется определить площадь сечения продольной арматуры.

Расчет.. ho = h - а = 800-50=750 мм. Требуемую площадь продольной арматуры определяем согласно п.3.21. По формуле (3.22) находим значение am:

Так как am = 0,544 > ar = 0,39 (см. табл. 3.2), при заданных размерах сечения и класса бетона необходима сжатая арматура.

Принимая а' = 30 мм и ξR = 0,531 (см. табл. 3.2), по формулам (3.24) и (3.25) определим необходимую площадь сечений сжатой и растянутой арматуры:

Принимаем As= 942 мм2 (3Æ20); As = 4021 мм2 (5Æ32).

Пример 5. Дано: сечение размерами b = 300 мм, h = 700 мм; а = 50 мм; а' = 30 мм; бетон класса В30 (Rb = 17 МПа); арматура А400 (Rs = Rsc = 355 МПа); площадь сечения сжатой арматуры As= 942 мм2 (3Æ20); изгибающий момент М = 580 кН м.

Требуется определить площадь сечения растянутой арматуры.

Расчет.. ho = 700 - 50 = 650 мм. Расчет производим с учетом наличия сжатой арматуры согласно п.3.22.

Вычисляем значение am:

Так как am = 0,173 < ar = 0,39 (см. табл. 3.2), необходимую площадь растянутой арматуры определяем по формуле (3.26)

Принимаем 3Æ36 (Аs = 3054 мм2).

Пример 6. Дано: сечение размерами b = 300 мм, h = 700 мм; а = 70 мм; а' = 30 мм; бетон класса В20 (Rb =11,5 МПа); арматура класса А400 (Rs = Rsc = 355 МПа); площадь сечения растянутой арматуры As = 4826 мм2 (6Æ32), сжатой - А's= 339 мм2 (3Æ12); изгибающий момент М = 630 кН м

Требуется проверить прочность сечения.

Расчет. ho = 700 - 70 = 630 мм. Проверку прочности сечения производим согласно п.3.18.

По формуле (3.16) определяем высоту сжатой зоны х:

По табл. 3.2 находим ξR = 0,531 и ar = 0,39. Так как, прочность сечения проверяем из условия (3.18):

,

 т.е. прочность согласно этому условию не обеспечена. Уточним правую часть условия (3.18) путем замены значения ar на (0,7 ar + 0,3 am), где

am = ξ(1 - 0,5 ξ ) = 0,733(1- 0,5·0,733) = 0,464:

(0,7·0,39 + 0,3·0,464)11,5·300·6302 + 355·339·600 = 636,6·106 Н·мм = 636,6 кН·м > М = 630 кНм, т.е. прочность обеспечена.

Тавровые и двутавровые сечения

Пример 7.  Дано: сечение размерами b'f = 1500 мм, h'f= 50 мм,

b = 200 мм, h = 400 мм; а = 80 мм; бетон класса В25 (Rb = 14,5 МПа), арматура класса А400 (Rs = 355 МПа); изгибающий момент М = 260 кНм.

Требуется определить площадь сечения продольной арматуры.

Расчет. hо = 400 - 80 = 320 мм. Расчет производим согласно п.3.25 в предположении, что сжатая арматура по расчету не требуется.

Проверим условие (3.32), принимая As = 0:

т.е. граница сжатой зоны проходит в полке, и расчет производим как для прямоугольного сечения шириной b = b'f =1500 мм согласно п.3.21.

Вычисляем значение

(см. табл.3.2)

т.е. сжатая арматура действительно по расчету не требуется.

Площадь сечения растянутой арматуры вычисляем по формуле (3.22)

Принимаем 4Æ28 (As = 2463 мм2).

Пример 8. Дано: сечение размерами b'f = 400 мм, h'f = 120 мм, b = 200 мм, h = 600 мм; а = 65 мм; бетон класса В15 (Rb = 8,5 МПа); арматура класса А400 (Rs = 355 МПа); изгибающий момент М = 270 кНм.

Требуется определить площадь сечения растянутой арматуры.

Расчет. hо = 600 - 65 = 535 мм. Расчет производим согласно п.3.25 в предположении, что сжатая арматура по расчету не требуется.

Так как

Rbb'f h'f (ho - 0,5h'f) = 8,5·400·120(535 - 0,5·120) = 193,8·106 Н мм = 193,8 кНм >M = 270 кНм,

граница сжатой зоны проходит в ребре и площадь сечения растянутой арматуры определим по формуле (3.33), принимая площадь сечения свесов равной А0v = (b'f -b)h'f = (400 - 200) 120 = 24000 мм2. Вычисляем значение am при A's = 0

 (см. табл. 3.2),

следовательно, сжатая арматура не требуется.

Принимаем 4Æ25(As = 1964 мм2).

Пример 9. Дано: сечение размерами b'f = 400 мм, h'f = 100 мм, b = 200 мм, h = 600 мм; а = 70 мм, бетон класса В25 (Rb = 14,5 МПа); растянутая арматура класса А400 (Rs = 355 МПа); площадь ее сечения As = 1964 мм2 (4Æ25); A's = 0,0; изгибающий момент М = 300 кНм.

Требуется проверить прочность сечения.

Расчет. hо = 600 - 70 = 530 мм. Проверку прочности производим согласно п.3.23, принимая As= 0,0. Так как Rs·As = 355·1964 = 697220 Н > Rb·b'f·h'f =14,5·400·100 = 580000 Н, граница сжатой зоны проходит в ребре, и прочность сечения проверяем из условия (3.28).

Для этого по формуле (3.29) определим высоту сжатой зоны, приняв площадь свесов равной А0v = (b'f -b)h'f = (400 - 200) ·100 = 20000 мм2:

(где ξR найдено из табл. 3.2).

т.е. прочность сечения обеспечена.

Элементы, работающие на косой изгиб

3.27. Расчет прямоугольных, тавровых, двутавровых и Г-образных сечений элементов, работающих на косой изгиб, допускается производить, принимая форму сжатой зоны по черт.3.5; при этом должно выполняться условие

Мх <Rb[Aweb(h0-х1/3) + Sov,x] + RscSsx,                                                        (3.35)

где Мх - составляющая изгибающего момента в плоскости оси х (за оси х и у принимаются две взаимно перпендикулярные оси, проходящие через центр тяжести сечения растянутой арматуры параллельно сторонам сечения; для сечения с полкой ось х принимается параллельно плоскости ребра);

Awebb - А0v;                                                                                           (3.36)

Аb - площадь сечения сжатой зоны бетона, равная

                                                                                  (3.37)

Черт.3.5 Форма сжатой зоны в поперечном сечении железобетонного элемента, работающего на косой изгиб

а - таврового сечения ; б- прямоугольного сечения; 1-плоскость действия изгибающего момента ; 2- центр тяжести сечения растянутой арматуры

А0v - площадь наиболее сжатого свеса полки;

х1 - размер сжатой зоны бетона по наиболее сжатой боковой стороне сечения, определяемый по формуле

                                                                       (3.38)

где

S0v,y, S0v,x - статические моменты площади Aov относительно

соответственно оси х и у;

β - угол наклона плоскости действия изгибающего момента к оси х, т.е. ctg β = Mx/My (My - составляющая изгибающего момента в плоскости оси у);

bо - расстояние от центра тяжести сечения растянутой арматуры до наиболее сжатой боковой грани ребра (стороны).

При расчете прямоугольных сечений значения Aov, S0v,y, S0v,x  принимаются равными нулю.

Если Аb < Aov или х1 < 0,2h'f, расчет производится как для прямоугольного сечения шириной b = b'f. Если выполняется условие

                                                                                             (3.39)

(где b0v - ширина наименее сжатого свеса полки),

расчет производится без учета косого изгиба, т.е. по формулам пп. 3.18 и 3.23 на действие момента М = Мх, при этом следует проверить условие (3.40), принимая х1 как при косом изгибе.

При определении значения Аb по формуле (3.37) напряжение в растянутом стержне, ближайшем к границе сжатой зоны, не должно быть менее Rs, что обеспечивается соблюдением условия

                                                                     (3.40)

где ξR - см. табл. 3.2;

b0i и h0i - расстояния от рассматриваемого стержня соответственно до наиболее сжатой грани (стороны) и до наиболее сжатой грани, нормальной к оси х (см. черт.3.5);

 b'ov - ширина наиболее сжатого свеса;

θ - угол наклона прямой, ограничивающей сжатую зону, к оси y; значение tgθ определяется по формуле

Если условие (3.40) не соблюдается, расчет сечения производится последовательными приближениями, заменяя в формуле (3.37) для каждого растянутого стержня величину Rs значениями напряжений равными

(МПа), но не более Rs.

При проектировании конструкций не рекомендуется допускать превышение значения ξi над ξR более чем на 20%, при этом можно провести только один повторный расчет с заменой в формуле (3.37) значений Rs для растянутых стержней, для которых ξi > ξR , на напряжения, равные

                                                                     (3.41)

При пользовании формулой (3.37) за растянутую арматуру площадью As рекомендуется принимать арматуру, располагаемую вблизи растянутой грани, параллельной оси у, а за сжатую арматуру площадью As - арматуру, располагаемую вблизи сжатой грани, параллельно оси у, но по одну наиболее сжатую сторону от оси x: (см. черт.3.5).

Настоящим пунктом можно пользоваться, если выполняется условие:

для прямоугольных, тавровых и Г-образных сечений с полкой в сжатой зоне х1 < h;

для двутавровых, тавровых и Г-образных сечений с полкой в растянутой зоне х1 < - hf  bov,t tg θ,

где hf и bov,t - высота и ширина наименее растянутого свеса полки (черт.3.6).

В противном случае расчет производится на основе нелинейной деформационной модели согласно пп.3.72 - 3.76, принимая N = 0.

3.28. Требуемое количество растянутой арматуры при косом изгибе для элементов прямоугольного, таврового и Г-образного сечений с полкой в сжатой зоне рекомендуется определять с помощью графиков на черт.3.7. Для этого ориентировочно задаются положением центра тяжести сечения растянутой арматуры и по графику определяют значения as в зависимости от:

Черт.3.6. Тавровое сечение со сжатой зоной, заходящей в наименее растянутый свес полки

где Ssx и Ssy - статические моменты площади As относительно соответственно оси y и оси х.

Остальные обозначения - см. п.3.27.

Если атх < 0, расчет производится как для прямоугольного сечения, принимая b = b'f.

Если значение as на графике находится по левую сторону от кривой, отвечающей параметру , подбор арматуры производится без учета косого изгиба, т.е. согласно пп.3.22 и 3.26 на действие момента М = Мх.

 

 

 

Черт.3.7. График несущей способности прямоугольного, таврового и Г-образного сечений для элементов, работающих на косой изгиб

Требуемая площадь растянутой арматуры при условии ее работы с полным расчетным сопротивлением определяется по формуле

                                                                     (3.42)

где Aov - см. формулу (3.36).

Центр тяжести фактически принятой растянутой арматуры должен отстоять от растянутой грани не дальше, чем принятый в расчете центр тяжести. В противном случае расчет повторяют, принимая новый центр тяжести сечения растянутой арматуры.

Условием работы растянутой арматуры с полным сопротивлением является выполнение условия (3.40). При арматуре класса А400 и ниже условие (3.40) всегда выполняется, если значение as на графике 3.7 находится внутри области, ограниченной осями координат, и кривой, отвечающей параметру b'ov/bo

Если условие (3.40) не выполняется, следует поставить (увеличить) сжатую арматуру, либо повысить класс бетона, либо увеличить размеры сечения (особенно наиболее сжатого свеса полки).

Значения as на графике не должны находиться между осью amy, и кривой, соответствующей параметру ho/h. В противном случае х1 становится более h, и расчет тогда следует производить согласно пп.3.72 - 3.76.

Примеры расчета

Пример 10. Дано: железобетонный прогон кровли с уклоном 1:4 (ctgβ = 4); сечение и расположение арматуры - по черт.3.8; бетон класса В25 (Rb =14,5МПа); растянутая арматура класса А400 (Rs = 355МПа); As = 763 мм2 (3Æ18); A's= 0,0; изгибающий момент в вертикальной плоскости M = 82,6 кНм.

Требуется проверить прочность сечения.

Ра с ч е т. Из черт.3.8 следует:

ho = 400-30-(1·30/3)=360 мм; bo = (2·120+1·30)/3=90 мм; b'ov = bov = (300-150)/2=75 мм;

h'f = 80+20/2=90 мм.

Черт.3.8 К примеру расчета 10

1 -плоскость действия изгибающего момента; 2-центр тяжести сечения растянутой арматуры

По формуле (3.37) определим площадь сжатой зоны бетона Аb

Площадь наиболее сжатого свеса полки и статические моменты этой площади относительно х и у соответственно равны:

Aov= b'ov h'f  = 75·90 = 6750 мм2;

Sov,y = Aov (b0 + b'ov /2)=6750(90 + 75/2) = 86,06·104 мм3;

Sov,x = Aov(h0 - h'f /2) = 6750(360 - 90/2) = 212,6·104 мм3.

Так как Аb > Aov, расчет продолжаем как для таврового сечения.

Aweb = 18680 - 6750 = 11930 мм2.

Определим по формуле (3.38) размер сжатой зоны х1. Для этого вычисляем

Проверим условие (3.39):

следовательно, расчет продолжаем по формулам косого изгиба.

Проверим условие (3.40) для наименее растянутого стержня. Из черт.3.8 имеем boi = 30 мм, hoi = 400 - 30 = 370 мм;

 (см. табл. 3.2).

Условие (3.40) не соблюдается. Расчет повторим, заменяя в формуле (3.37) значение Rs для наименее растянутого стержня напряжением σS определенным по формуле (3.41), и корректируя значения ho и bо.

Поскольку все стержни одинакового диаметра, новые значения Ao, ho и bо будут равны:

Аналогично определим значения Sov,y, Sov,x, Aweb и x1:

Sov,y = 6750· (91,1 + 75/2) = 86,8·104 мм3;

Sov,x = 6750· (359,8 - 90/2) = 212,5·104 мм3;

Aweb = 18338 - 6750 = 11588 мм2;

Проверяем прочность сечения из условия (3.35), принимая Ssx=0 и

Rb[Aweb(h0-х1/3) + Sov,x] = 14,5[11588(359,8-173,1/3)+212,5·104] = 81,57·106 Н·мм > Mx = 80,1·106 Н·мм

т.е. прочность сечения обеспечена.

Пример 11. По данным примера 10 необходимо подобрать площадь растянутой арматуры при моменте в вертикальной плоскости M = 64кНм.

Расчет. Составляющие изгибающего момента в плоскости осей у и х равны:

Mx =Myctgβ = 15,52·4 = 62,1 кНм.

Определим необходимое количество арматуры согласно п.3.28.

Принимая значения Rb, ho, Sov,x и Sov,y из примера 10 при Ssy = Ssx = 0 находим значения aтх и amy:

Так как aтх > 0, расчет продолжаем для таврового сечения.

Поскольку точка с координатами aтх = 0,185 и amy = 0,072 на графике черт.3.7 находится по правую сторону от кривой, отвечающей параметру , и по левую сторону от кривой, отвечающей параметру b'ov/bov = 75 / 90 = 0,83, расчет продолжаем с учетом косого изгиба и полного расчетного сопротивления арматуры, т.е. условие (3.40) выполнено.

На графике координатам aтх = 0,185 и amy = 0,072 соответствует значение as = 0,20. Тогда согласно формуле (3.42) площадь сечения растянутой арматуры будет равна

Аs = (as boho + Aov)Rb/Rs = (0,2·90·360 + 6750)14,5/355 = 540,4 мм2.

Принимаем стержни 3Æ16 (Аs = 603 мм2) и располагаем их, как показано на черт.3.8.

РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ ПРИ ДЕЙСТВИИ ПОПЕРЕЧНЫХ СИЛ

3.29. Расчет элементов при действии поперечных сил должен обеспечить прочность:

- по полосе между наклонными сечениями согласно п.3.30;

- на действие поперечной силы по наклонному сечению согласно пп.3.31- 3.42;

- на действие момента по наклонному сечению согласно пп.3.43-3.48.

Расчет железобетонных элементов по полосе между наклонными сечениями

3.30. Расчет изгибаемых элементов по бетонной полосе между наклонными сечениями производят из условия

Q < 0,3Rbbho,                                                                                            (3.43)

где Q - поперечная сила в нормальном сечении, принимаемая на расстоянии от опоры не менее ho.

Расчет железобетонных элементов по наклонным сечениям на действие поперечных сил
Элементы постоянной высоты, армированные хомутами, нормальными к оси элемента

3.31. Расчет изгибаемых элементов по наклонному сечению (черт.3.9) производят из условия

Q < Qb + Qsw,                                                                                           (3.44)

где Q - поперечная сила в наклонном сечении с длиной проекции с от внешних сил, расположенных по одну сторону от рассматриваемого наклонного сечения; при вертикальной нагрузке, приложенной к верхней грани элемента, значение Q принимается в нормальном сечении, проходящем на расстоянии с от опоры; при этом следует учитывать возможность отсутствия временной нагрузки на приопорном участке длиной с;

Qb - поперечная сила, воспринимаемая бетоном в наклонном сечении;

Qsw - поперечная сила, воспринимаемая хомутами в наклонном сечении.

Поперечную силу Qb определяют по формуле

                                                                                                 (3.45)

где

                                                                                        (3.46)

Значение Qb принимают не более 2,5Rbtbho и не менее 0,5Rbtbho.

Значение с определяют согласно п.3.32.

Усилие Qsw определяют по формуле

Qsw = 0,75 qsw co,                                                                                      (3.47)

где qsw - усилие в хомутах на единицу длины элемента, равное

                                                                                           (3.48)

cо - длина проекции наклонной трещины, принимаемая равной с, но не более 2ho.

Хомуты учитывают в расчете, если соблюдается условие

qsw > 0,25Rbtb                                                                                           (3.49)

Можно не выполнять это условие, если в формуле (3.46) учитывать такое уменьшенное значение Rbtb, при котором условие (3.49) превращается в равенство, т.е. принимать

Черт.3.9. Схема усилий в наклонном сечении элементов с хомутами при расчете его на действие поперечной силы

3.32. При проверке условия (3.44) в общем случае задаются рядом наклонных сечений при различных значениях с, не превышающих расстояние от опоры до сечения с максимальным изгибающим моментом и не более 3ho

При действии на элемент сосредоточенных сил значения с принимают равными расстояниям от опоры до точек приложения этих сил (черт.3.10), а также равными  но не меньше h0, если это значение меньше расстояния от опоры до 1-го груза.

При расчете элемента на действие равномерно распределенной нагрузки q невыгоднейшее значение с принимают равным , а если при этом  или , следует принимать , где значение q1 определяют следующим образом:

а) если действует сплошная равномерно распределенная нагрузка q, q1 = q;

б) если нагрузка q включает в себя временную нагрузку, которая приводится к эквивалентной по моменту равномерно распределенной нагрузке qv (т.е. когда эпюра моментов М от принятой в расчете нагрузки qv всегда огибает эпюру М от любой фактической временной нагрузки), q1 = q - 0,5 qv.

При этом в условии (3.44) значение Q принимают равным Qmax - q1с, где Qmax - поперечная сила в опорном сечении.

 

Черт.3.10. Расположение расчетных наклонных сечений при сосредоточенных силах
1 - наклонное сечение проверяемое на действие поперечной силы
Q1; 2 – то же, силы Q2

3.33. Требуемая интенсивность хомутов, выражаемая через qsw (см. п.3.31), определяется следующим образом:

а) при действии на элемент сосредоточенных сил, располагаемых на расстояниях сi от опоры, для каждого i-го наклонного сечения с длиной проекции сi не превышающей расстояния до сечения с максимальным изгибающим моментом, значение qsw(i) определяется следующим образом в зависимости от коэффициента аi = сi /ho, принимаемого не более 3:

если

                     (3.50)

если

                                                        (3.51)

где а0i - меньшее из значений аi и 2;

Qi - поперечная сила в i-ом нормальном сечении, расположенном на расстоянии сi от опоры;

окончательно принимается наибольшее значение qsw,

б) при действии на элемент только равномерно распределенной нагрузки q требуемая интенсивность хомутов qsw определяется в зависимости от  следующим образом:

если Qbi 2Mb/ho - Qmax

;                                                                                     (3.52)

если Qbi < 2Mb/ho - Qmax.

;                                                                                (3.53)

при этом, если Qbl < Rbtbho,

,                                                             (3.54)

где Mb, - см. п.3.31; q1 -см. п.3.32.

В случае, если полученное значение qsw не удовлетворяет условию (3.49), его следует вычислять по формуле

                         (3.55)

и принимать не менее .

3.34. При уменьшении интенсивности хомутов от опоры к пролету с qsw1 до qsw2 (например, увеличением шага хомутов) следует проверить условие (3.44) при значениях с, превышающих l1 - длину участка с интенсивностью хомутов qsw1 (черт.3.11). При этом значение Qsw принимается равным:

если с < 2ho + l1,

Qsw = 0,75[qsw1co- (qsw1 - qsw2)(c - l1)];                                                      (3.56)

если с > 2ho + l1,

Qsw = 1,5qsw2ho,                                                                                         (3.57)

co -см. п.3.31.

При действии на элемент равномерно распределенной нагрузки длина участка с интенсивностью хомутов qsw1 принимается не менее значения l1, определяемого в зависимости от Δqsw = 0,75(qsw1 - qsw2) следующим образом:

- если Δqsw < q1,

                                                 (3.58)

где , но не более 3hо

при этом, если

- если Δqswq1

                                                       (3.59)

здесь Мb, c0 -см. п.3.31; q1- см. п.3.32;

Qb.min = 0,5Rbtbho

Если для значения qsw2 не выполняется условие (3.49), длина l1 вычисляется при скорректированных согласно п.3.31 значениях  и Qb.min = 2hoqsw2; при этом сумма (Qb.min + 1,5qswho) в формуле (3.59) принимается не менее нескорректированного значения Qb.min

Черт.3.11. К расчету наклонных сечений при изменении интенсивности хомутов

3.35. Шаг хомутов, учитываемых в расчете, должен быть не более значения:

                                                                                        (3.60)

Кроме того, хомуты должны отвечать конструктивным требованиям, приведенным в пп.5.20 и 5.21.

Элементы переменной высоты с поперечным армированием

3.36. Расчет элементов с наклонными на приопорных участках сжатыми или растянутыми гранями производят согласно п.3.31, принимая в качестве рабочей высоты сечения наибольшее значение ho в пределах рассматриваемого наклонного сечения (черт.3.12).

Черт.3.12 Балки с переменной высотой сечения и наклонной гранью

3.37. Для балок без отгибов высотой, равномерно увеличивающейся от опоры к пролету, рассчитываемых на действие равномерно распределенной нагрузки q, наклонное сечение проверяют из условия (3.44) при невыгоднейшем значении с, равном

                                                                   (3.61)

при этом, если это значение с меньше  или,

если , то невыгоднейшее значение с равно

                                                (3.62)

Принятое значение с не должно превышать , а также длину участка балки с постоянным значением β.

Здесь: ho1 - рабочая высота опорного сечения балки;

q1 -см. п.3.32;

β - угол между сжатой и растянутой гранями балки.

Рабочую высоту принимают равной ho = ho1+ с·tg β.

При уменьшении интенсивности хомутов от qsw1 у опоры до qsw2 в пролете следует проверить условие (3.44) при значениях с, превышающих l1 - длину участка элемента с интенсивностью хомутов qsw1; при этом значение Qsw определяют по формуле (3.56) либо по формуле (3.57) п.3.34 в зависимости от выполнения или невыполнения условия .

При действии на балку сосредоточенных сил, значение с принимают равным расстоянию от опоры до точек приложения этих сил, а также определяют по формуле (3.62) при q1 = 0, если это значение с меньше расстояния от опоры до 1-го груза.

3.38. Для консолей без отгибов высотой, равномерно увеличивающейся от свободного конца к опоре (черт.3.13), в общем случае проверяют условие (3.44), задаваясь наклонными сечениями со значениями с, определяемыми по формуле (3.62) при q1 = 0 и принимаемыми не более расстояния от начала наклонного сечения в растянутой зоне до опоры. При этом за ho1 и Q принимают соответственно рабочую высоту и поперечную силу в начале наклонного сечения в растянутой зоне. Кроме того, если с >2ho1/(1-2tgβ), проверяют наклонные сечения, проведенные до опоры.

Черт.3.13. Консоль высотой, уменьшающейся от опоры к свободному концу

При действии на консоль сосредоточенных сил начало наклонного сечения располагают в растянутой зоне нормальных сечений, проведенных через точки приложения этих сил (см. черт.3.13).

При действии равномерно распределенной нагрузки или нагрузки, линейно увеличивающейся к опоре, консоль рассчитывают как элемент с постоянной высотой сечения согласно п.3.31 и п.3.32, принимая рабочую высоту hо в опорном сечении.

Элементы, армированные отгибами

3.39. Проверку прочности наклонного сечения на действие поперечной силы для элемента с отгибами производят из условия (3.44) с добавлением к правой его части значения

                                                                         (3.63)

где Аs,inc - площадь сечения отгибов, пересекающих наклонную трещину, расположенную у конца наклонного сечения с длиной проекции равной с, но не более 2ho (черт.3.14);

θ - угол наклона отгибов к продольной оси элемента.

Черт.3.14. К определению наиболее опасной наклонной трещины для элементов с отгибами при расчете на действие поперечной силы

Значения с принимают равным расстояниям от опоры до концов отгибов, а также до мест приложения сосредоточенных сил; кроме того, следует проверить наклонные сечения, заканчивающиеся на расстоянии 2ho от начала предпоследней и последней плоскости отгибов (черт.3.15).

3.40. Расстояния между опорой и концом отгиба, ближайшего к опоре s1 также между концом предыдущей и началом последующего отгибов s2 (черт.3.16) должно быть не более .

Черт.3.15. К определению наклонных сечений в элементе с отгибами

1-4- расчетные наклонные сечения

Черт.3.16. Расстояния между хомутами, опорой и отгибами

Кроме того, отгибы должны удовлетворять конструктивным требованиям, приведенным в п.5.22.

Элементы без поперечной арматуры

3.41. Расчет элементов без поперечной арматуры на действие поперечной силы производится из условий

a)

Qmax < 2,5Rbtbho                                                                                        (3.64)

где Qmax - максимальная поперечная сила у грани опоры;

6)

                                                                                          (3.65)

где Q - поперечная сила в конце наклонного сечения, начинающегося от опоры; значение с принимается не более сmax = 3ho.

Для сплошных плоских плит с несвободными краями (соединенными с другими элементами или имеющими опоры) и шириной b > 5h допускается принимать стах = 2,4ho.

При действии на элемент сосредоточенных сил значения с принимаются равными расстояниям от опоры до точек приложения этих сил (черт.3.17), но не более стах.

При расчете элемента на действие распределенных нагрузок, если выполняется условие

,                                                                                                (3.66)

условие (3.65) принимает вид

Qmax< 0,5Rbtbho + 3hoq1                                                                            (3.67)

(что соответствует с = 3ho),

а при невыполнении условия (3.66) -

 (что соответствует ).

Черт.3.17. Расположение невыгоднейших наклонных сечений в элементах без поперечной арматуры

1- наклонное сечение, проверяемое на действие поперечной силы Q1; 2- то же, силы Q2

Для упомянутых плоских плит с несвободными боковыми краями правая часть условия (3.66) делится на 0,64, а условие (3.67) принимает вид

Qmax≤ 0,625Rbtbho + 2,4hoq1.                                                                    (3.67a)

Здесь q1 принимается при действии равномерно распределенной нагрузки в соответствии с п.3.32, а при действии сплошной нагрузки с линейно изменяющейся интенсивностью - равной средней интенсивности на приопорном участке длиной, равной четверти пролета балки (плиты) или половины вылета консоли, но не более стах.

3.42. Для элементов с переменной высотой сечения при проверке условия (3.64) значение ho принимается в опорном сечении, а при проверке условия (3.65) - как среднее значение ho в пределах наклонного сечения.

Для элементов с высотой сечения, увеличивающейся с увеличением поперечной силы значение сmах принимается равным , а для плоских плит, указанных в п.3.41, -

где ho1 - рабочая высота в опорном сечении;

β - угол между растянутой и сжатой гранями.

При действии на такой элемент распределенной нагрузки значение с в условии (3.65) принимается равным

                                                                    (3.68)

но не более стах где q1 - см. п.3.32.

Расчет железобетонных элементов по наклонным сечениям на действие моментов

3.43. Расчет железобетонных элементов по наклонным сечениям на действие момента (черт.3.18) производят из условия

M Ms + Msw,                                                                                          (3.69)

где М - момент в наклонном сечении с длиной проекции с на продольную ось элемента, определяемый от всех внешних сил, расположенных по одну сторону от рассматриваемого наклонного сечения, относительно конца наклонного сечения (точка 0), противоположного концу, у которого располагается проверяемая продольная арматура, испытывающая растяжение от момента в наклонном сечении (черт.3.19)

Черт.3.18. Схема усилий в наклонном сечении при расчете его по изгибающему моменту

Черт.3.19. Определение расчетного значения момента при расчете наклонного сечения

а - для свободно опертой балки; б - для консоли

Ms - момент, воспринимаемый продольной арматурой, пересекающей наклонное сечение, относительно противоположного конца наклонного сечения;

Msw- момент, воспринимаемый поперечной арматурой, пересекающей наклонное сечение, относительно противоположного конца наклонного сечения (точка 0).

Момент Ms, определяют по формуле

Ms = Ns·zs,                                                                                                 (3.70)

где Ns - усилие в продольной растянутой арматуре, принимаемое равным RsAs, а в зоне анкеровки определяемое согласно п.3.45;

zs - плечо внутренней пары сил, определяемое по формуле

 (где b - ширина сжатой грани);

но при наличии сжатой арматуры принимаемое не менее ho - a'; допускается также принимать zs = 0,9ho.

Момент Msw при поперечной арматуре в виде хомутов, нормальных к продольной оси элемента, определяют по формуле

Msw =0,5 qsw c2                                                                                          (3.71)

где qsw определяют по формуле (3.48) п.3.31, а с принимают не более 2ho.

Если хомуты в пределах длины с меняют свою интенсивность с qsw у начала наклонного сечения на qsw2, момент Msw определяют по формуле:

Msw =0,5 qsw1 c2-0,5(qsw1 - qsw2)(c - l1)2                                                     (3.72)

где l1 - длина участка с интенсивностью хомутов qsw1.

Значение с определяют согласно п.3.46.

3.44. Расчет на действие момента производят для наклонных сечений, расположенных в местах обрыва продольной арматуры, а также у грани крайней свободной опоры балок и у свободного конца консолей при отсутствии у продольной арматуры специальных анкеров.

Кроме того, рассчитываются наклонные сечения в местах резкого изменения высоты элемента (например, в подрезках).

3.45. При пересечении наклонного сечения с продольной растянутой арматурой, не имеющей анкеров в пределах зоны анкеровки, усилие Ns определяется по формуле:

                                                                                           (3.73)

где ls - расстояние от конца арматуры до точки пересечения с ней наклонного сечения;

1ап - длина зоны анкеровки, равная 1ап = λап ds

где

                                                                                         (3.74)

Rbond - расчетное сопротивление сцепления арматуры с бетоном, равное

Rbond = η1 η2Rbt

η1 - коэффициент, учитывающий влияние вида поверхности арматуры и принимаемый равным:

2,5 - для арматуры классов А300, А400, А500;

2,0 - для арматуры класса В500;

1,5 - для арматуры класса А240;

η2 - коэффициент, учитывающий влияние диаметра арматуры и принимаемый равным:

1,0 - при диаметре ds <32 мм,

0,9 - при диаметрах 36 и 40 мм;

а - коэффициент, учитывающий влияние поперечного обжатия бетона и поперечной арматуры и принимаемый равным:

а) для крайних свободных опор,

если 0,25 ≤ σb/Rb ≤ 0,75                                                                      - 0,75;

если σb/Rb < 0,25 или σb/Rb > 0,75                                                      - 1,0,

здесь σb = Fsup/Asup;

Fsup, Asup - опорная реакция и площадь опирания балки;

при этом если имеется поперечная арматура, охватывающая без приварки продольную арматуру, коэффициент а делится на величину  (где Asw и s - площадь сечения огибающего хомута и его шаг) и принимается не менее 0,7;

б) для свободных концов консоли - 1,0.

В любом случае коэффициент λап принимается не менее 15, а длина зоны анкеровки 1ап принимается не менее 200 мм.

Для стержней диаметром менее 36 мм значение λап можно принимать по табл.3.3.

В случае приваривания к продольным растянутым стержням поперечной или распределительной арматуры усилие Ns увеличивается на величину

,                                                                                (3.75)

принимаемую не более .

Здесь:

nw - количество приваренных стержней по длине ls;

φw - коэффициент, принимаемый по табл.3.4;

dw - диаметр припариваемых стержней.

При этом значение Ns принимается не более значения, вычисленного по формуле (3.73) с использованием при определении 1ап коэффициента, а = 0,7.

При устройстве на концах стержней специальных анкеров в виде пластин, шайб, гаек, уголков, высаженных головок и т.п., удовлетворяющих требованиям п.5.35, а также при приварке концов стержней к надежно заанкеренным закладным деталям усилие Ns принимается равным RsAs.

3.46. Для свободно опертых балок невыгоднейшее наклонное сечение начинается от грани опоры и имеет проекцию с, принимаемую не более 2ho и определяемую следующим образом:

Таблица 3.3

Класс арматуры

Коэффициент а

Относительная длина анкеровки арматуры λап = lan/ds при бетоне классов

В10

В15

В20

В25

В30

В35

В40

В45

В50

В55

В60

А240

0,7

45

33

28

24

22

19

18

17

16

15

15

0,75

48

36

36

26

23

21

19

18

17

16

15

1,0

64

48

40

34

31

28

26

24

22

21

20

А300

0,7

34

25

21

18

16

15

15

15

15

15

15

0,75

36

27

23

19

18

16

15

15

15

15

15

1,0

48

36

30

26

23

21

19

18

17

16

15

А400

0,7

44

33

28

24

22

19

18

17

16

15

15

0,75

48

36

30

25

23

20

19

18

17

16

15

1,0

63

47

39

34

31

27

25

24

22

21

20

А500

0,7

54

41

34

29

26

23

22

20

19

18

17

0,75

58

44

36

31

28

25

23

22

20

19

18

1,0

78

58

48

41

38

33

31

29

27

26

24

В500

0,7

65

48

40

35

32

28

26

24

23

21

20

0,75

69

52

43

37

34

30

28

26

24

23

22

1,0

93

69

58

49

45

40

37

35

32

31

29

Примечание. При расчете с учетом только постоянных и длительных нагрузок значения λап следует делить на γbl - 0,9.

Таблица 3.4.

dw

6

8

10

12

14

φw

200

150

120

100

80

а) если на элемент действуют сосредоточенные силы, значения с принимаются равными расстояниям от опоры до точек приложения этих сил, а также равным Qmax/qsw, если это значение меньше расстояния до 1-го груза;

б) если на элемент действует равномерно распределенная нагрузка q, значение с определяется по формуле:

,                                                                                              (3.76)

здесь qsw - см. формулу (3.48).

Если хомуты в пределах длины с меняют свою интенсивность с qsw1 у начала наклонного сечения на qsw2, значение с определяется по формуле (3.76) при уменьшении числителя на Δqswl1 а знаменателя - на Δqsw, (где l1 - длина участка с интенсивностью qsw1, Δqsw1 = qsw1- qsw2)

Для балок с наклонной сжатой гранью при действии равномерно распределенной нагрузки проверяют наклонные сечения со значениями с, равными

                                (3.77)

где ho - рабочая высота в опорном сечении;

β - угол наклона сжатой грани к горизонтали.

При растянутой грани, наклоненной под углом β к горизонтали, в этих формулах значение tg β заменяется на sin β.

Для консолей, нагруженных сосредоточенными силами (черт.3.19,б) проверяются наклонные сечения, начинающиеся у мест приложения сосредоточенных сил вблизи свободного конца со значениями с = Q1/qsw (где Q1 - поперечная сила в начале наклонного сечения), но не более l1 - расстояния от начала наклонного сечения до опоры. При этом, если Q1/qsw > 2ho, следует принимать с = l1. Если такие консоли имеют наклонную сжатую грань, значение Q1/qsw заменяется на (Q1 - Nstg β)/qsw.

Для консолей, нагруженных только равномерно распределенной нагрузкой q, невыгоднейшее сечение заканчивается в опорном сечении и имеет длину проекции

                                                                                        (3.78)

но не более 2ho.

В случае, если с < l - lan , расчет наклонного сечения можно не производить.

Здесь: As площадь сечения арматуры, доводимой до свободного конца; zs - см. п.3.43; lan - см. п.3.45.

При отсутствии поперечной арматуры значение с принимают равным 2ho, где ho - рабочая высота в конце наклонного сечения.

3.47. Для обеспечения прочности наклонных сечений на действие момента в элементах постоянной высоты с хомутами продольные растянутые стержни, обрываемые в пролете, должны заводиться за точку теоретического обрыва (т.е. за нормальное сечение, в котором внешний момент становится равным предельному моменту Мult без учета обрываемой арматуры, черт.3.20) на длину не менее величины w, определяемой по формуле

                                                                                        (3.79)

при этом, если

,                                                                       (3.80)

где Q - поперечная сила в нормальном сечении, проходящем через точку теоретического обрыва;

qsw см. п.3.31;

ds - диаметр обрываемого стержня.

Для балки с наклонной сжатой гранью при tg β ≤ 0,2 величина w принимается равной

w = aho + 5ds,                                                                                          (3.81)

при этом, если а >1,

w = ho(2,2 - 1,2/а) + 5ds,                                                                          (3.82)

где

β - угол наклона грани к горизонтали.

Для балки с наклонной растянутой гранью w определяется аналогично с заменой tg β на sin β.

Для элементов без поперечной арматуры значение w принимают равным 2hо.

Кроме того, должны быть учтены требования пп.5.32 и 5.33.

Черт.3.20. Обрыв растянутых стержней в пролете

1- точка теоретического обрыва;2- эпюра М

3.48. Для обеспечения прочности наклонных сечений на действие момента начало отгиба в растянутой зоне должно отстоять от нормального сечения, в котором отгибаемый стержень полностью используется по моменту, не менее, чем на 0,5ho, а конец отгиба должен быть расположен не ближе того нормального сечения, в котором отгиб не требуется по расчету (черт.3.21).

Черт. 3.21. К определению места отгиба продольной растянутой арматуры

Примеры расчета

Расчет наклонных сечений на действие поперечных сил

Пример 12. Дано: ребро ТТ-образной плиты перекрытия с размерами сечения: h = 350 мм, d = 85 мм; а = 35 мм; бетон класса В15 (Rb = 8,5 МПа, Rbt = 0,75 МПа); ребро армировано плоским каркасом с поперечными стержнями из арматуры класса А400 (Rsw = 285 МПа) диаметром 8 мм (Asw = 50,3 мм2) шагом sw - 100 мм; полная равномерно распределенная нагрузка, действующая на ребро, q = 21,9 кН/м; временная эквивалентная нагрузка qv = 18 кН/м; поперечная сила на опоре Qmax = 62 кН.

Требуется проверить прочность наклонных сечений и бетонной полосы между наклонными сечениями.

Расчет. ho = h - a = 350-35 = 315 мм.

Прочность бетонной полосы проверим из условия (3.43):

0,3Rbbh0 = 0,3·8,5·85·315 = 68276 Н > Qmax = 62 кН, т.е. прочность полосы обеспечена.

Прочность наклонного сечения по поперечной силе проверим согласно п.3.31.

По формуле (3.48) определим интенсивность хомутов

Поскольку , т.е. условие (3.49) выполнено, хомуты полностью учитываем и значение Мb определяем по формуле (3.46)

Мb = 1,5Rbtbh02 = 1,5·0,75·85·3152 = 9,488·106 Н·мм.

Согласно п.3.32 определим длину проекции невыгоднейшего наклонного сечения с.

q1 = q - qv/2 = 21,9 - 18/2 = 12,9 кН/м (Н/мм).

Поскольку , значение с определяем по формуле

Принимаем co = c = 280,7 мм. Тогда

Qsw = 0,75qswco = 0,75·143,3·280,7 = 30168 Н = 30,17 кН.

Q = Qmaxq1c = 62 - 12,9·0,28 = 58,4 кН.

Проверяем условие (3.44)

Qb + Qsw = 33,8 + 30,17 = 63,97 Н > Q = 58,4 кН,

т.е. прочность наклонных сечений обеспечена.

Проверим требование п.3.35:

т.е. требование выполнено. Условия п.5.21 sw < hо/2= 315/2 = 157 мм и sw < 300 мм также выполнены.

Пример 13. Дано: свободно опертая балка перекрытия с размерами сечения: b = 200 мм, h = 400 мм; ho = 370 мм; бетон класса В25 (Rbt = 1,05 МПа); хомуты двухветвевые диаметром 8 мм (Asw = 101мм2) с шагом sw= 150 мм; арматура класса А240 (Rsw  = 170 МПа); временная эквивалентная по моменту нагрузка qv = 36 кН/м, постоянная нагрузка qg = 14 кН/м; поперечная сила на опоре Qmax = 137,5 кН.

Требуется проверить прочность наклонных сечений.

Расчет. Прочность наклонных сечений проверяем согласно п.3.31. По формуле (3.48) определим интенсивность хомутов

Поскольку , т.е. условие (3.49) выполняется, хомуты учитываем полностью и значение Мb определяем по формуле (3.46)

Мb = 1,5Rbtbhо2 =  1,5·1,05·200·3702 = 4,312·107 Н·мм.

Согласно п.3.32 определяем длину проекции невыгоднейшего наклонного сечения:

q1 = qg + 0,5qv = 14 + 0,5·36 = 32 кН/м (Н/мм).

Поскольку

значение с принимаем равным 1161 мм > 2h0 = 740 мм. Тогда сo = 2h0 = 740 мм и Qsw = 0,75qswco = 0,75·114,5·740 = 63548 Н = 63,55 кН;

Q = Qmaxq1c = 137,5 - 32·1,161 = 100,35 кН.

Проверяем условие (3.44)

Qb + Qsw = 37,14 + 63,55 = 100,69 кН > Q = 100,35 кН,

 т.е. прочность наклонных сечений обеспечена.

Пример 14. Дано: свободно опертая балка перекрытия пролетом l = 5,5 м; полная равномерно распределенная нагрузка на балку q = 50 кН/м; временная эквивалентная нагрузка qv = 36 кН/м; размеры поперечного сечения b = 200 мм, h = 400 мм; ho = 370 мм; бетон класса В15 (Rbt = 0,75 МПа); хомуты из арматуры класса А240 (Rsw =170 МПа).

Требуется определить диаметр и шаг хомутов у опоры, а также выяснить, на каком расстоянии и как может быть увеличен шаг хомутов.

Расчет. Наибольшая поперечная сила в опорном сечении равна

Определим требуемую интенсивность хомутов приопорного участка согласно п.3.33,б.

По формуле (3.46) определяем Мb

Мb = 1,5Rbtbh02 = 1,5·0,75·200·3702 = 30,8·106 Н·мм.

Согласно п.3.32

q1 = q - 0,5qvt = 50 - 0,5·36 = 32 кН/м (Н/мм).

Так как 2Мb/ho - Qmax = 2·30,8·106/370 - 137500 = 28986 Н < Qb1= 62790H, интенсивность хомутов определяем по формуле (3.52)

Согласно п.5.21 шаг хомутов sw у опоры должен быть не более ho/2 = 185 и 300 мм, а в пролете - 0,75ho = 271 и 500 мм. Максимально допустимый шаг у опоры согласно п.3.35 равен

Принимаем шаг хомутов у опоры sw1= 150 мм, а в пролете 250 мм. Отсюда

Принимаем в поперечном сечении два хомута по 10 мм (Asw = 157 мм2).

Таким образом, принятая интенсивность хомутов у опоры и в пролете соответственно равны:

Проверим условие (3.49):

0,25Rbtb = 0,25·0,75·200 = 37,5 Н/мм < qsw1 и 37,5 < qsw2

Следовательно, значения qsw1 и qsw2 не корректируем.

Определим, согласно п.3.34 длину участка l1 с интенсивностью хомутов qsw1. Так как Δ qsw = 0,75(qsw1 - qsw2) = 0,75(177,9 - 106,7) = 53,4 Н/мм > q1 = 32 Н/мм, значение l1 вычислим по формуле (3.59), приняв Qb.min = 0,5Rbtbho = 0,5·55500 = 27750 Н

Принимаем длину участка с шагом хомутов sw1 = 150 мм равной 0,9 м.

Пример 15. Дано: балка покрытия, нагруженная сосредоточенными силами как показано на черт.3.22,а; размеры сечения - по черт.3.22,б; бетон класса В15 (Rbt = 0,75 МПа); хомуты из арматуры класса А240 (Rsw = 170 МПа).

Требуется определить диаметр и шаг хомутов, а также выяснить, на каком расстоянии от опоры и как может быть увеличен шаг хомутов.

Черт.3.22. К примеру расчета 15

Расчет. ho = 890 - 80 = 810 мм.

Определим требуемую интенсивность хомутов qsw согласно п.3.33,а, принимая длину проекции сечения с, равной расстоянию от опоры до первого груза c1 = 1350 мм. Тогда a1 = c1/ho = 1350/810 = 1,667 < 2, и, следовательно, a01 = a1 = 1,667.

Определяем

Согласно черт.3.22 поперечная сила на расстоянии с1 от опоры равна Q1 = 105,2 кН. Тогда и, следовательно, qsw определяем по формуле (3.51):

Определим qsw при значении с, равном расстоянию от опоры до второго груза - с2 = 2850 мм:

a2 = c2/ho = 2850/810 = 3,52 > 3; принимаем a2 = 3,0.

Поскольку a2 > 2, принимаем a02 = 2,0.

Соответствующая поперечная сила равна Q2 = 58,1 кН. Тогда


и, следовательно,

Принимаем максимальное значение qsw = qsw1 = 60,7. Из условия сварки принимаем диаметр хомутов 8 мм (Asw = 50,3 мм2). Тогда максимально допустимый шаг хомутов на приопорном участке равен

Принимаем sw1 =100 мм. Назначаем шаг хомутов в пролете равным sw2 = 300 мм. Тогда интенсивность хомутов приопорного участка

а пролетного участка

Зададим длину участка с шагом хомутов sw1, равной расстоянию от опоры до первого груза – l1 = 1350 мм, и проверим условие (3.44) при значении с, равном расстоянию от опоры до второго груза - с = 2850 мм. Но поскольку 3ho = 3·810 = 2430 мм < с, принимаем с = 2430мм. Значение Qsw определяем согласно п.3.34.

Так как 2ho + l1 = 2·810 + 1350 = 2970 мм > с, значение Qsw определяем по формуле (3.56). При этом, поскольку с > 2ho, со = 2ho = 1620 мм.

Qsw = 0,75[qsw1co - (qsw1 - qsw2)(c - l1)] = 0,75[85,5·1620 - (85,5 -28,5)(2430 -1350)] =

 57712 Н = 57,7 кН.

При с =3ho, Qb = Qb.min = 0,5Rbtbhо = 0,53·0,75·80·810 = 24300 H = 24,3 кН.

Поперечная сила на расстоянии с = 2430 мм от опоры (черт.3.22) равна

Проверяем условие (3.44)

Qb + Qsw = 24,3 + 57,7 = 82,0 кН > Q = 59,5 кН,

т.е. прочность этого наклонного сечения обеспечена.

Большее значение с не рассматриваем, поскольку при этом поперечная сила резко уменьшается.

Таким образом, длину участка с шагом хомутов swl = 100 мм принимаем равной 1,35 м.

Пример 16. Дано: двухскатная балка пролетом 8,8 м (черт.3.23,а); сплошная равномерно распределенная нагрузка на балку q = 46 кН/м; размеры опорного сечения по черт.3.23,б; бетон класса В20 (Rbt = 0,9 МПа); хомуты из арматуры класса А400 (Rsw = 285 МПа) диаметром 10 мм (Asw = 78,5 мм2) шагом sw = 100 мм.

Требуется проверить прочность наклонного сечения по поперечной силе.

Расчет. Рабочая высота опорного сечения равна ho = 600 - 40 = 560 мм (см. черт.3.23,б). По формуле (3.48) определим интенсивность хомутов

Черт.3.23. К примеру расчета 16

Определим проекцию невыгоднейшего наклонного сечения с согласно п.3.37. Из черт.3.23,а имеем tgβ= 1/12, b = 100 мм,

Rbt b = 0,9·100 = 90 Н/мм; 1 - 2tgβ = 1 - 2 / 12 = 0,833.

Поскольку qsw /(Rbtb) = 223,7/90 = 2,485 > 2(1 - 2tgβ)2 = 2·0,8332 = 1,389, значение с вычисляем по формуле (3.62).

Рабочая высота поперечного сечения ho на расстоянии с = 444 мм от опоры равна

ho = ho1 + с·tgβ = 560 + 444/12 = 597 мм.

Поскольку с = 444 мм < 2ho, сo = с = 444 мм;

Проверим условие (3.44), принимая поперечную силу в конце наклонного сечения равной

Q = Qmax q1c=(46·8,8)/2 - 46·0,444 = 182,0 кН:

Qb + Qsw = 108,4 + 74,5 = 182,9 кН > Q = 182 кН,

т.е. прочность наклонных сечений по поперечной силе

обеспечена.

Пример 17. Дано: консоль размерами по черт.3.24, сосредоточенная сила на консоли F = 130 кН, расположенная на расстоянии l1 = 0,8 м от опоры; бетон класса В15 (Rbt = 0,75 МПа); хомуты двухветвевые диаметром 8 мм (Asw = 101 мм2) из арматуры класса А240 (Rsw = 170 МПа) шагом sw = 200 мм.

Черт.3.24. К примеру расчет 17

Требуется проверить прочность наклонных сечений по поперечной силе.

Расчет. Согласно п.3.38 проверяем из условия (3.44) невыгоднейшее наклонное сечение, начинающееся от места приложения сосредоточенной силы, при значении с, определенном по формуле (3.62) при q1 = 0 и .

Рабочая высота в месте приложения сосредоточенной силы равна  (см. черт.3.24); Rbtb = 0,75·200 = 150Н/мм.

Значение qsw равно

Поскольку , оставляем с = 469,4 мм.

Определим рабочую высоту ho в конце наклонного сечения

h0 = h0l + с·tgβ = 305 + 469·0,369 = 478 мм.

 Поскольку с = 469,4 > 2ho, сo = с = 469 мм.

;

Qb + Qsw = 109,6 + 30,2 = 139,8 кН > F = 130 кН,

т.е. прочность наклонных сечений по поперечной силе обеспечена.

Пример 18. Дано: сплошная плита днища резервуара без поперечной арматуры размером 3x6 м толщиной h = 160 мм, монолитно связанная по периметру с балками; полная равномерно распределенная нагрузка 50 кН/м2; бетон класса В15 (Rbt = 0,75 МПа).

Требуется проверить прочность плиты на действие поперечной силы.

Расчет. ho = 160 - 20 = 140 мм. Расчет проводим для полосы шириной b = 1,0 м = 1000 мм, пролетом l = 3 м. Тогда q = 50·1,0 = 50 кН/м, а поперечная сила на опоре равна

Проверим условие (3.64)

2,5Rbtbh0 = 2,5·0,75·1000·140 = 262500 Н > Qmax = 75 кН.

Проверим условие (3.66), принимая q1 = q - 50 кН/м (Н/мм). Поскольку боковые края плиты монолитно связаны с балками, условие (3.66) имеет вид

следовательно, прочность плиты проверяем из условия (3.67а)

0,625Rbtbhо + 2hоq1 = 0,625·0,75·1000·140 + 2,4·140·50 = 82425 Н =

82,4 кН > Qmax = 75 кН,

т.е. прочность плиты по поперечной силе обеспечена.

Пример 19. Дано: панель стенки резервуара консольного типа с переменной толщиной от 262 (в заделке) до 120 мм (на свободном конце) вылетом 4,25 м; боковое давление грунта, учитывающее нагрузку от транспортных средств на поверхности грунта, линейно убывает от qo = 55 кН/м2 в заделке до q = 6 кН/м2 на свободном конце; а = 22 мм; бетон класса В15 (Rbt = 0,75 МПа).

Требуется проверить прочность панели на действие поперечной силы.

Расчет. Рабочая высота сечения панели в заделке равна ho1 = 262-22 = 240 мм.

Определим tgβ (β - угол между растянутой и сжатой гранями):

tgβ =(262-120)/4250 = 0,0334.

Проверим условия п.3.41. Поперечная сила в заделке равна

Qmax =((55+6)/2)·4,25 = 129,6 кН.

Расчет производим для полосы панели шириной b = 1,0 м = 1000 мм.

Проверим условие (3.64), принимая ho = ho1 = 240 мм.

2,5Rbtbhо = 2,5·0,75·1000·240 = 450000 Н = 450 кН > Qmax

т.е. условие выполняется.

Поскольку панели связаны друг с другом, а ширина стенки резервуара заведомо больше 5h, значение cmax определяем по формуле

Средняя интенсивность нагрузки на приопорном участке длиной cmax = 554 мм равна

Поскольку

принимаем с = cmax = 554 мм.

Определим рабочую высоту сечения на расстоянии с/2 от опоры (т.е. среднее значение ho в пределах длины с):

.

Поперечная сила на расстоянии с = 554 мм от опоры равна:

Q = Qmax q1c= 129,6 - 51,8·0,554 = 100,9 кН.

 Проверим условие (3.65):

т.е. прочность панели по поперечной силе обеспечена.

Расчет наклонных сечений на действие момента

Пример 20. Дано: свободно опертая балка пролетом l = 5,5м с равномерно распределенной нагрузкой q = 29 кН/м; конструкция приопорного участка балки принята по черт.3.25; бетон класса В15 (Rb = 8,5 МПа); продольная арматура без анкеров класса А400 (Rs =355 МПа) площадью сечения As = 982 мм2 (2Æ25); хомуты из арматуры класса А240 (Rsw =170 МПа) диаметром 8 мм шагом sw =150 мм приварены к продольным стержням.

Требуется проверить прочность наклонных сечений на действие момента.

Расчет. ho = h - а = 400 - 40 = 360 мм. Поскольку растянутая арматура не имеет анкеров, расчет наклонных сечений на действие момента необходим.

Определим усилие в растянутой арматуре по формуле (3.73).

Принимаем начало наклонного сечения у грани опоры. Отсюда ls = lsup - 10 мм = 280 - 10 = 270 мм (см. черт.3.25).

Опорная реакция балки равна

а площадь опирания балки Asup = blsup  = 200·280 = 56000 мм2,

откуда ,

следовательно, а = 1,0. Из табл.3.3 при классе бетона В15, классе арматуры А400 и а = 1,0 находим λan = 47. Тогда, длина анкеровки равна lan = λands = 47·25 = 1175 мм.

Ns = RsAs (ls/lan) =  355·982·(270/1175) = 80106 Н.

Черт.3.25. К примеру расчета 20

Поскольку к растянутым стержням в пределах длины ls приварены 4 вертикальных и 2 горизонтальных поперечных стержня (см. черт.3.25), увеличим усилия Ns на величину Nw.

Принимая dw = 8 мм, nw = 6, φw = 150 (см. табл.3.4), получаем

Nw = 0,7nw φw dw2 Rbt = 0,7·6·1502·0,75 = 30,24·103 Н.

Отсюда Ns = 80106 + 30240 = 110346 Н.

Определяем максимально допустимое значение Ns. Из табл.3.3 при а = 0,7 находим λan = 33; тогда , т.е. оставляем Ns = 110346 Н. Определим плечо внутренней пары сил

Тогда момент, воспринимаемый продольной арматурой, равен

Ms = Nszs = 110346·327,5 = 36,1·106 Нмм.

По формуле (3.48) вычислим величину qsw

Определяем длину проекции невыгоднейшего наклонного сечения по формуле (3.76), принимая значение Qmax равным опорной реакции балки, т.е. Qmax = Fsup = 80 кН.

Тогда момент, воспринимаемый поперечной арматуры, равен

Msw =0,5qswc2 = 0,5·114,5·557,52 = 17,8·106 Н мм.

Момент в наклонном сечении определяем как момент в нормальном сечении, расположенном в конце наклонного сечения, т.е. на расстоянии от точки приложения опорной реакции, равной x = lsup/3 + с = 280/3 + 557,5 = 650,8 мм

.

Проверяем условие (3.69)

Ms + Мsw = 36,1 + 17,8 = 53,9 кНм >М = 45,9 кНм,

т.е. прочность наклонных сечений по изгибающему моменту обеспечена.

Пример 21. Дано: ригель многоэтажной рамы с эпюрами моментов и поперечных сил от равномерно распределенной нагрузки q = 228 кН/м по черт.3.26; бетон класса В25; продольная и поперечная арматура класса А400 (Rs = 355 МПа, Rsw = 285 МПа); поперечное сечение приопорного участка - по черт.3.26; хомуты трехветвевые диаметром 10 мм (Rsw = 236 мм2) шагом sw равным 150 мм.

Требуется определить расстояние от левой опоры до места обрыва первого стержня верхней арматуры.

Расчет. Из черт.3.26 имеем: ho = h - a = 800 - 60 = 740 мм; а -50 мм; площадь сечения верхней растянутой арматуры без учета одного обрываемого стержня Æ32 As = 1609 мм2 (2Æ32); As = 2413 мм2 (3Æ32). Определим предельный момент, соответствующий этой арматуре по формуле (3.19), поскольку As < A's, т.е. х < 0:

Mult = RsAs(hoа') = 355·1609·(740 - 50) = 394,1·106 Н мм = 394,1 кНм.

По эпюре моментов определяем расстояние от опоры до места теоретического обрыва первого стержня из уравнения

откуда , где

Поперечная сила в месте теоретического обрыва равна

Q = Qmax - q·x = 620 - 228·0,355 = 539 кН.

Определим величину qsw,

Поскольку м, длину w, на которую надо завести обрываемый стержень за точку теоретического обрыва, определяем по формуле (3.79)

.

Черт.3.26. К примеру расчета 21

Следовательно, расстояние от опоры до места обрыва стержня может быть принято равным х + w = 355 + 761 = 1116 мм.

Определим необходимое расстояние lan от места обрыва стержня до опорного сечения, предполагая полное использование этого стержня в опорном сечении. Для этого по табл.3.3 при а = 1,0 классе бетона В25, классе арматуры А400 находим λ = 34. Тогда lan = λand = 34·32 = 1088 мм < 1116 мм.

Следовательно, обрываем стержень на расстоянии 1116 мм от опоры.

ВНЕЦЕНТРЕННО СЖАТЫЕ ЭЛЕМЕНТЫ

ОБЩИЕ ПОЛОЖЕНИЯ

3.49. При расчете железобетонных элементов на действие сжимающей продольной силы следует учитывать случайный эксцентриситет еа принимаемый не менее:

1/600 длины элемента или расстояния между его сечениями, закрепленными от смещения;

1/30 высоты сечения;

10 мм.

Для элементов статически неопределимых конструкций (в том числе для колонн каркасных зданий) значение эксцентриситета продольной силы относительно центра тяжести приведенного сечения еo принимают равным значению эксцентриситета, полученного из статического расчета, но не менее еа.

Для элементов статически определимых конструкций (например, фахверковые стойки, стойки ЛЭП и т.п.) эксцентриситет еo принимают равным сумме эксцентриситетов - из статического расчета конструкции и случайного.

3.50. Расчет нормальных сечений внецентренно сжатых элементов производят в плоскости эксцентриситета продольной силы (в плоскости изгиба) и отдельно в нормальной к ней плоскости с эксцентриситетом ео, равным случайному еа (см. п.3.49).

Расчет из плоскости изгиба можно не производить, если гибкость элемента lo/i (для прямоугольных сечений - lo/h) в плоскости изгиба превышает гибкость в плоскости, нормальной плоскости изгиба.

Расчет элемента с учетом эксцентриситетов в плоскостях обеих главных осей (косое внецентренное сжатие) следует производить, если оба эти эксцентриситета превышают случайные еа.

Во всех случаях эксцентриситеты еo определяются с учетом влияния прогиба элемента (см. пп.3.53-3.55).

3.51. Расчет нормальных сечений внецентренно сжатых элементов в общем случае производят на основе нелинейной деформационной модели согласно пп.3.72 - 3.76.

Расчет элементов прямоугольного, таврового и двутаврового сечений с арматурой, расположенной у перпендикулярных плоскости изгиба граней элемента, при направлении эксцентриситета в плоскости симметрии сечения допускается производить по предельным усилиям согласно пп.3.56-3.61.

Кроме того, по предельным усилиям можно производить расчет:

- элементов кольцевого и круглого сечений с арматурой, равномерно распределенной по окружности, при числе стержней более 6 согласно пп.3.62-3.65;

- элементов прямоугольного сечения с арматурой в виде 4-х одинаковых угловых стержней на косое внецентренное сжатие согласно п.3.66.

РАСЧЕТ ПРИ ДЕЙСТВИИ ПОПЕРЕЧНЫХ СИЛ

3.52. Расчет внецентренно сжатых элементов при действии поперечных сил производится аналогично расчету изгибаемых элементов в соответствии с пп.3.29-3.35 и следующих указаний:

а) при N/Nb > 0,5 правая часть условия (3.43) умножается на коэффициент

φn1 = 2(1- N/Nb),                                                                                       (3.83)

где Nb =1,3RbA, но не менее N;

б) значение поперечной силы, воспринимаемой бетоном в наклонном сечении Qb, а также правая часть условия (3.49) умножается на коэффициент

                                                                        (3.84)

на этот коэффициент φn2 умножается также связанное с Qb значение Мь.

УЧЕТ ВЛИЯНИЯ ПРОГИБА ЭЛЕМЕНТОВ

3.53. Влияние прогиба элемента на момент продольной силы (или ее эксцентриситет еo) учитывается, как правило, путем расчета конструкции по деформированной схеме, принимая во внимание неупругие деформации бетона и арматуры, а также наличие трещин.

Допускается производить расчет конструкции по недеформированной схеме, а влияние прогиба элемента учитывать путем умножения моментов на коэффициенты ηv и ηh в соответствии с формулой

М = Mvηv + Mhηh + Мt                                                                               (3.85)

где Mv- момент от вертикальных нагрузок, не вызывающих заметных горизонтальных смещений концов;

ηv - коэффициент, принимаемый равным:

для сечений в концах элемента: при податливой заделке -1,0;

при жесткой заделке - по формуле (3.86);

для сечений в средней трети длины элемента - по формуле (3.86);

для прочих сечений - по линейной интерполяции;

Mh - момент от нагрузок, вызывающих горизонтальное смещение концов (ветровых и т.п.);

ηh - коэффициент, определяемый по формуле (3.86);

Mt - момент от вынужденных горизонтальных смещений концов (т.е. смещений, не зависящих от жесткости элемента, например, от температурных деформаций перекрытий и т.п.). Моменты, используемые в настоящем пункте, допускается определять относительно центра тяжести бетонного сечения.

Примечание. Если вертикальные нагрузки вызывают заметные горизонтальные смещения (например при несимметричных рамах), то моменты Mv определяются при фиктивных горизонтальных неподвижных опорах, а моменты от горизонтальных сил, равных реакциям в этих опорах, следует относить к моментам Mh, т.е. суммировать с моментами от горизонтальных нагрузок.

3.54. Значение коэффициента ηv(h) при расчете конструкции по недеформированной схеме определяется по формуле

                                                                                        (3.86)

где Ncr - условная критическая сила, определяемая по формуле

                                                                                               (3.87)

lo - расчетная длина элемента, определяемая для коэффициентов ηv и ηh согласно соответственно п.3.55,а и п.3.55,б;

D - жесткость железобетонного элемента в предельной стадии, определяемая по формулам:

для элементов любой формы сечения

                                                                       (3.88)

для элементов прямоугольного сечения с арматурой, расположенной у наиболее сжатой и у растянутой (менее сжатой) грани элемента

                                       (3.89)

В формулах (3.88) и (3.89):

I и Is - момент инерции соответственно бетонного сечения и сечения всей арматуры относительно центра тяжести бетонного сечения;

φl - коэффициент, учитывающий влияние длительного действия нагрузки на прогиб элемента и равный

φl = l + М1l/М1                                                                                           (3.90)

но не более 2;

М1 и М1l - моменты внешних сил относительно оси, нормальной плоскости изгиба и проходящей через центр наиболее растянутого или наименее сжатого (при целиком сжатом сечении) стержня арматуры, соответственно от действия всех нагрузок и от действия постоянных и длительных нагрузок; для элементов, рассчитываемых согласно пп.3.56-3.61, допускается М1 и М1l определять относительно оси, проходящей через центр тяжести всей арматуры S;

δе - коэффициент, принимаемый равным eo/h, но не менее 0,15 (для кольцевых и круглых сечений значение h заменяется на Dcir);

Жесткость D при вычислении коэффициентов ηv и ηh определяется с учетом всех нагрузок. В случае необходимости коэффициент ηv можно снизить, вычисляя жесткость D без учета нагрузок, вызывающих смещение концов.

При гибкости элемента lo/i < 14 (для прямоугольных сечений - при lo/h < 4) можно принимать ηv(h) = 1,0.

При N > Ncr следует увеличивать размеры сечения.

3.55. Расчетная длина lо принимается равной:

а) при вычислении коэффициента ηv, а также при расчете элемента на действие продольной силы со случайным эксцентриситетом для элементов:

с шарнирным опиранием на двух концах - 1,0l;

с шарнирным опиранием на одном конце, а на другом конце:

с жесткой заделкой - 0,7l

с податливой заделкой - 0,9l;

с заделкой на двух концах: жесткой - 0,5l ;

податливой - 0,8l ;

с податливой заделкой на одном конце и с жесткой заделкой на другом - 0,7l ;

б) при вычислении коэффициента ηh для элементов:

с шарнирным опиранием на одном конце, а на другом конце

с жесткой заделкой - 1,5l;

с податливой заделкой - 2,0l;

 с заделкой на двух концах: жесткой - 0,8l;

податливой - 1,2l;

с податливой заделкой на одном конце и с жесткой заделкой на другом - l;

с жесткой заделкой на одном конце и незакрепленным другим концом (консоль) -2l.

Здесь l - расстояние между концами элемента. Для конкретных конструкций и сооружений можно принимать иные значения lo.

РАСЧЕТ НОРМАЛЬНЫХ СЕЧЕНИЙ ПО ПРЕДЕЛЬНЫМ УСИЛИЯМ

Прямоугольные сечения с симметричной арматурой

3.56 Проверку прочности прямоугольных сечений с симметричной арматурой (когда RsAs = RscA's) производят из условия

МRbbx(hо - 0,5x) + (RscA's - N/2)(hо - а'),                                             (3.91)

где М - момент относительно центра тяжести сечения, определяемый с учетом прогиба элементов согласно пп.3.53-3.55;

х - высота сжатой зоны, принимаемая равной

а) при ;(черт.3.27)

б) при aп > ξR - х = ξ·hо,

где ξ определяется по формуле

                                                                          (3.92)

здесь

ξR  - см. табл. 3.2.

Черт.3.27. Схема усилий в поперечном прямоугольном сечении внецентренно сжатого элемента

3.57. Требуемое количество симметричной арматуры определяется следующим образом в зависимости от относительной  величины продольной силы

а) при aп ξR

                                                    (3.93)

б) при aп > ξR

                                                        (3.94)

где ξ - относительная высота сжатой зоны, определяемая по формуле (3.92), где значение as допускается принимать равным

                                                            (3.95)

М - см. пп.3.53-3.55.

Если значение a' не превышает 0,15ho необходимое количество арматуры можно определять с помощью графика черт.3.28, используя формулу

                                                                               (3.96)

где аs определяется по графику черт.3.28 в зависимости от значений

Черт.3.28. Графики несущей способности внецентренно сжатых элементов прямоугольного сечения с симметричной арматурой

 

3.58. Расчет сжатых элементов из бетона классов В15-В35 на действие продольной силы, приложенной с эксцентриситетом, принятым согласно п.3.49, равным случайному эксцентриситету еo = h/30, при lo < 20h допускается производить из условия

Nφ(RbA + RscAs,tot),                                                                               (3.97)

где φ - коэффициент, определяемый по формуле

φ = φb+2(φsb- φb)as,                                                                                  (3.98)

но принимаемый не более φsb.

Здесь φb и φsb - коэффициенты, принимаемые по табл. 3.5 и 3.6.

Таблица 3.5

Коэффициент φb при lo/h

6

8

10

12

14

16

18

20

0

0,93

0,92

0,91

0,90

0,89

0.88

0,86

0,84

0,5

0,92

0,91

0,90

0,89

0,86

0,82

0,77

0,71

1,0

0,92

0,91

0,89

0,87

0,83

0,76

0,68

0,60

Таблица 3.6.

Коэффициент φsb при lo/h

6

8

10

12

14

16

18

20

А. При а = а' < 0,15h и при отсутствии промежуточных стержней (см. эскиз) или площади сечения этих стержней менее Аs,tot/3

0

0,93

0,92

0,91

0,90

0,89

0,88

0,86

0,83

0,5

0,92

0,91

0,91

0,90

0,88

0,87

0,83

0,79

1,0

0,92

0,91

0,90

0,90

0,88

0,85

0,80

0,74

Б. При 0,25h  > а = а' ≥ 0,15h или при площади промежуточных стержней (см. эскиз), равной или более Аs,tot/3 независимо от а

0

0,92

0,92

0,91

0,89

0,87

0,85

0,82

0,79

0,5

0,92

0,91

0,90

0,88

0,85

0,81

0,76

0,71

1,0

0,92

0,91

0,89

0,87

0,83

0,77

0,70

0,62

Обозначения, принятые в табл. 3.5 и 3.6:

N1 - продольная сила от действия постоянных и длительных нагрузок.

N - продольная сила от всех нагрузок.

                                                                                           (3.99)

As,tot - площадь сечения всей арматуры в сечении;

при as > 0,5 можно, не пользуясь формулой (3.98), принимать φ = φsb

Прямоугольные сечения с несимметричной арматурой

3.59. Проверку прочности прямоугольных сечений с несимметричной арматурой производят из условия (3.91) п.3.56, определяя высоту сжатой зоны по формуле

                                                                                                     (3.100)

при этом, если  (см. табл. 3.2), высоту сжатой зоны корректируют, вычисляя по формуле

                                                                 (3.101)

3.60. Площади сечения сжатой и растянутой арматуры, соответствующие минимуму их суммы, определяются по формулам:

                                                                               (3.102)

                                                                           (3.103)

где aR и ξR - определяются по табл. 3.2 и принимаются не более соответственно 0,4 и 0,55;

е = M/N + (h0-а')/2.

При отрицательном значении Аs вычисленном по формуле (3.103), площадь сечения арматуры S принимается минимальной по конструктивным требованиям, но не менее величины

                                                  (3.104)

а площадь сечения арматуры S' определяется:

при отрицательном значении As,min - по формуле

       (3.105)

при положительном значении As,min - по формуле

                                                                           (3.106)

Если принятая площадь сечения сжатой арматуры A'S,fact значительно превышает ее значение, вычисленное по формуле (3.102) (например, при отрицательном его значении), площадь сечения растянутой арматуры может быть уменьшена исходя из формулы

                                                                  (3.107)

где

Если сжатая арматура отсутствует или не учитывается в расчете, площадь сечения растянутой арматуры определяется всегда только по формуле (3.107), при этом должно выполняться условие am < aR.

Двутавровые сечения с симметричной арматурой

3.60. Проверку прочности двутавровых сечений с симметричной арматурой, сосредоточенной в полках (черт.3.29), производят следующим образом.

Если соблюдается условие

NRbb'fh'f                                                                                                (3.108)

(т.е. граница сжатой зоны проходит в полке), расчет производится как для прямоугольного сечения шириной b'f в соответствии с п.3.56.

Черт.3.29. Схема усилий в поперечном двутавровом сечении внецентренно сжатого элемента

Если условие (3.108) не соблюдается (т.е. граница сжатой зоны проходит в ребре), прочность сечения проверяют из условия

           (3.109)

где высоту сжатой зоны х принимают равной:

а) при

б) при ξ > ξR

                                                              (3.110)

где

Aov - площадь сжатых свесов полки, равная

ξR - см. табл.3.2.

Примечание. При переменной высоте свесов полок значение h'f принимается равным средней высоте свесов.

3.61. Требуемое количество симметричной арматуры двутавровых сечений определяется следующим образом.

При соблюдении условия (3.108) подбор арматуры производят как для прямоугольного сечения шириной b'f согласно п.3.57.

Если условие (3.108) не соблюдается, подбор арматуры производят в зависимости от относительной высоты сжатой зоны, равной

 ξ = an - aov                                                                                                (3.111)

а)при ξξR

                                           (3.112)

б) ξ > ξR

                                          (3.113)

где относительную высоту сжатой зоны ξ1 = x/ho определяют из формулы (3.110), вычисляя as по формуле

                                                                  (3.114)

при этом ξ  принимается не более 1,0.

В формулах (3.111) - (3.114):

an, aov -см. п.3.60;

Кольцевые сечения

3.62. Проверка прочности кольцевых сечений (черт.3.30) при соотношении внутреннего и наружного радиусов r1/r20,5 и арматуре, равномерно распределенной по окружности (при продольных стержнях не менее 7), производится следующим образом в зависимости от относительной площади сжатой зоны бетона

                                                              (3.115)

а) при 0,15 < ξcir < 0,6 - из условия

(3.116)

б) при ξcir ≤ 0,15 - из условия

                                (3.117)

Черт.3.30. Схема, принимаемая при расчете кольцевого сечения сжатого элемента

где

в) при ξcir 0,6 - из условия

                                                         (3.119)

где

                                                                            (3.120)

В формулах (3.115) - (3.120):

As,tot - площадь сечения всей продольной арматуры;

rs - радиус окружности, проходящей через центры тяжести стержней продольной арматуры ;

Момент М определяется с учетом прогиба элементов согласно пп.3.53-3.55.

3.63. Проверку прочности, а также определение необходимого количества продольной арматуры для кольцевых сечений, указанных в п.3.62, при rs rт и классе арматуры не выше А400 допускается производить с помощью графиков черт.3.31, используя формулы:

                                                                                         (3.121)

                                                                                        (3.122)

где значения aт и as определяются по графику в зависимости от значении соответственно  и , а также .

При этом момент М определяется с учетом прогиба элемента согласно пп.3.53-3.55.

Черт.3.31. Графики несущей способности внецентренно сжатых элементов кольцевого сечения

Круглые сечения

3.64. Прочность круглых сечений (черт.3.32) с арматурой, равномерно распределенной по окружности (при числе продольных стержней не менее 7), при классе арматуры не выше А400 проверяется из условия

                                  (3.123)

где r - радиус поперечного сечения;

ξcir - относительная площадь сжатой зоны бетона, определяемая следующим образом:

Черт.3.32. Схема, принимаемая при расчете круглого сечения внецентренно сжатого элемента

при выполнения условия

                                                                  (3.124)

из решения уравнения

                                                                       (3.125)

при невыполнении условия (3.124) - из решения уравнения

                                                        (3.126)

φ - коэффициент, учитывающий работу растянутой арматуры и принимаемый равным: при выполнении условия (3.124) φ = 1,6(1 - 1,55ξcir)ξcir но не более 1,0; при невыполнении условий (3.124) φ = 0;

As,tot - площадь сечения всей продольной арматуры;

rs - радиус окружности, проходящей через центры тяжести стержней продольной арматуры.

Момент М определяется с учетом прогиба элемента согласно пп.3.53-3.55.

3.65. Проверку прочности, а также определение необходимого количества продольной арматуры для круглых сечений, указанных в п.3.64, допускается производить с помощью графиков на черт.3.33, используя формулы

                                                                                          (3.127)

Черт.3.33. Графики несущей способности внецентренно сжатых элементов круглого сечения

                                                                                        (3.128)

где значения as и аm определяются по графику в зависимости от значений соответственно  и , а также от .

При этом момент М определяется с учетом прогиба элемента согласно пп.3.53-3.55.

Расчет элементов на косое внецентренное сжатие

3.66. Для элементов прямоугольного сечения с симметричной арматурой в виде 4-х угловых стержней расчет на косое внецентренное сжатие можно производить из условия

                                                                             (3.129)

где Мх и Му - моменты от внешней нагрузки относительно центра тяжести сечения в плоскостях симметрии х и у;

 и  - предельные моменты в плоскостях симметрии х и у

относительно центра сечения, равные правой части условия (3.91) п.3.56.

Значения  и  можно также определять с помощью графика на черт.3.28 по формуле

                                                                               (3.130)

где aт определяется по графику на черт.3.28 в зависимости от  и .

b и ho- ширина и рабочая высота сечения применительно к направлению рассматриваемого момента;

при этом для соответствующего направления должно выполняться условие а' ≤ 0,15ho.

Показатель степени к в условии (3.129) определяется по формулам:

если an ≤ 0,4

                                                                          (3.131)

если an > 0,4,

                                                                               (3.132)

но не более 1,6,

где , , .

Примеры расчета
Прямоугольные сечения с симметричной арматурой

Пример 22. Дано: колонна среднего этажа рамного каркаса с сечением размерами b = 400 мм, h = 500 мм; а = а' = 40 мм; бетон класса В25 (Еb = 300000 МПа, Rb = 14,5 МПа); арматура класса А400 (Rs = Rsc = 355 МПа); площадь ее сечения Аs = А's= 1232 мм2 (2Æ28); продольная сила и изгибающие моменты в опорном сечении: от вертикальных нагрузок: всех Nv = 650 кН, Mv = 140 кН м, постоянных и длительных Nl = 620 кН, Мl = 130 кНм.; от ветровых нагрузок Nh = 50 кН, Mh = 73 кН м; высота этажа l = 6 м.

Требуется проверить прочность опорного сечения колонны.

Расчет. hо = 500 - 40 = 460 мм. Расчет ведем с учетом влияния прогиба согласно п.3.53. Поскольку рассматриваемое сечение опорное и колонна у этой опоры имеет податливую заделку, принимаем ηv = 1,0. Для вычисления коэффициента ηh принимаем согласно п.3.55,б расчетную длину колонны равной lo = 1,2·6 = 7,2 м. При этом lo/h =7,2/0,5 = 14,4 > 4, т.е. учет прогиба обязателен.

Усилия от всех нагрузок равны М = Mv + Mh = 140 + 73 = 213 кН·м, N = Nv + Nh= 650 + 50 = 700 кН. При этом,  т.е. согласно п.3.49 значение момента М не корректируем.

Определяем моменты М1 и М1l относительно растянутой арматуры соответственно от всех нагрузок и от постоянных и длительных нагрузок

Тогда φl = 1 1l1 = 1 + 260,2/360 = 1,72.

Так как , принимаем δe = 0,608.

По формуле (3.89) определим жесткость D

Отсюда

Расчетный момент с учетом прогиба определяем по формуле (3.85), принимая Мt = 0,0.

М = Mvηv + Mhηh = 140 + 73·1,156 = 224,4 кНм.

Проверяем прочность сечения согласно п.3.56.

 (см. табл. 3.2).

Следовательно, х = anhо = 0,262·460 = 120,5 мм.

т.е. прочность сечения обеспечена.

Пример 23. Дано: сечение колонны среднего этажа рамного каркаса размером b = 400 мм, h = 400 мм; а = а' = 50 мм; бетон класса В25 (Rb = 14,5 МПа, Еb = 3·105 МПа); арматура симметричная класса А400 (Rs = Rsc = 355 МПа); продольная сила и изгибающие моменты в опорном сечении: от вертикальных нагрузок: всех Nv = 900 кН, Mv = 160 кНм; постоянных и длительных Nl = 800 кН, Ml = 150 кНм; от ветровых нагрузок Nh = 100 кНм, Mh = 110 кНм; высота этажа 4,8 м.

Требуется определить площадь сечения арматуры.

Расчет. ho = 400 - 50 = 350 мм. В соответствии с п.3.53 принимаем ηv = 1,0, а согласно п.3.55,б расчетную длину колонны принимаем равной lo = 1,2·4,8 = 5,76 м.

При этом l0/h = 5,76/0,4 = 14,4 > 4, т.е. учитываем прогиб колонны.

Усилия от всех нагрузок равны М = Mv + Mh = 160 + 110 = 270 кНм; N =Nv + Nh = 900 + 100 = 1000 кН. При этом , т.е. значение М не корректируем.

Согласно п.3.54 определяем коэффициент ηh.

φl = 1 1l1 = 1 + 270 /420 = 1,64.

Так как , принимаем δe = 0,675.

В первом приближении принимаем μ = 0,01,

По формуле (3.89) определяем жесткость D:

Отсюда

М = Mvηv + Mhηh = 160·1,0 + 110·1,436 = 318 кН·м.

Необходимую площадь сечения арматуры определим согласно п.3.57. Для этого вычислим значения:

Из табл. 3.2 находим ξR = 0,531. Так как аn < ξR, А